Abstract:
Provided is a resin composition, comprising: an isobutylene-based copolymer (A) containing a halogen atom; an ethylene-vinyl alcohol copolymer (B); and a halogen scavenger (C), wherein a mass ratio (B/A) of the ethylene-vinyl alcohol copolymer (B) to the isobutylene-based copolymer (A) containing a halogen atom is from 20/80 to 50/50, and a content of the halogen scavenger (C) is from 0.01 to 1 part by mass based on 100 parts by mass of a total of the isobutylene-based copolymer (A) containing a halogen atom and the ethylene-vinyl alcohol copolymer (B). Such a resin composition is excellent in gas barrier properties and flexibility and stably produced over a long period of time.
Abstract:
There is provided a use of a material comprising fibers as an oxygen barrier, wherein the fibers comprise native cellulose and dialcohol cellulose. There is also provided a material comprising fibers and having a density of at least 1200 kg/m3, wherein the fibers comprise native cellulose and dialcohol cellulose and the oxygen permeability of the material according to ASTM D3985 is below 30 ml·μm/(m2·kPa·24 h) at 23° C. and 80% relative humidity.
Abstract:
The present invention relates to a polyketone copolymer consisting of repeating units represented by general formulae (3) and (4) below, and a mixture composition thereof. The present invention has excellent has barrier properties and thus can be used for vehicle fuel tanks, vehicle hydrogen tank liners, sealed food containers, etc. —(CH2CH2—CO)x— (3) —(CH2CH(CH3)—CO)y— (4) (wherein x and y denote the mol % of each of the general formulae (3) and (4) in a polymer).
Abstract:
A polyester composition is suitable for food and beverage packaging. The polyester composition is obtained by blending: (a) 90-97 wt. % of a thermoplastic polyester selected from polyethylene terephthalate, polyethylene naphthalene, and mixtures thereof, (b) 2-6 wt. % of MXD6, (c) 1-5000 ppm of a cobalt salt, (d) 0.1-1000 ppm ethylene glycol (EG), and (e) 0.1-1000 ppm of pyromellitic dianhydride (PMDA).
Abstract:
A pelletized resin composition according to the present invention contains an ethylene-vinyl alcohol resin (A), a polyamide (B), and a lower fatty acid magnesium salt (C) each in a specific amount, wherein the polyamide resin (B) is dispersed in the ethylene-vinyl alcohol resin (A) with an average dispersed particle diameter of 1 μm or less as determined using an electron microscope, and the lower fatty acid magnesium salt (C) is dispersed in both the ethylene-vinyl alcohol resin (A) and the polyamide resin (B). Accordingly, a pelletized resin composition that is superior in hue can be obtained. In addition, a film that is superior in thermal stability in the film formation, the appearance immediately after the film formation, and the appearance after the heating treatment is obtained.
Abstract:
An oxygen-absorbing composition of the present invention contains: a gas barrier resin (A) having an oxygen transmission rate of 500 mL·20 μm/(m2·day·atm) or less as measured at 20° C. and 65% RH; a thermoplastic resin (B) including repeating units represented by General Formula (I) below (where X is a methylene group or an oxygen atom, R1 is an alkenylene group having 3 to 12 carbon atoms, and n is an integer of 5 to 5000); at least one type of metal salt (C) selected from the group consisting of an iron salt, a nickel salt, a copper salt, a manganese salt, and a cobalt salt; and a bifunctional processing stabilizer (D) that is a compound having an acrylate structure and a hindered phenol structure in a same molecule. The oxygen-absorbing resin composition of the present invention performs excellent oxygen-absorbing properties, and enables to reduce generation of an unpleasant odor caused by decomposition of the oxygen-absorbing composition during oxygen absorption.
Abstract:
Barrier films are prepared from a blend of two high density polyethylene blend components and a high performance organic nucleating agent. The two high density polyethylene blend components have substantially different melt indices. Large reductions in the moisture vapor transmission rate of the film are observed in the presence of the nucleating agent when the melt indices of the two blend components have a ratio of greater than 10/1. The resulting barrier films are suitable for the preparation of packaging for dry foods such as crackers and breakfast cereals.
Abstract:
The present invention relates to a moisture-proof material having a polyurethane film substrate and an adhesive layer formed on at least one surface of the substrate, which material shows a tensile strength of not less than 7500 psi, and an elongation at break of not less than 550%.
Abstract:
The present invention discloses a semicrystalline polymer/graphene oxide composite film, comprising: a first semicrystalline-typed polymer, distributed in structural space of the composite film and having a porous structure; and graphene oxide, having a layered structure and distributed in the composite film wherein gas passage exist between adjacent layered structures, the first semicrystalline-typed polymer existing between part of adjacent layered structures forms into a second semicrystalline-typed polymer by further heat treatment after the first semicrystalline-typed polymer and graphene oxide are blended uniformly to be distributed in the composite film so as to fill and seal a portion of the porous structure to block gas from flowing to extend path length(s) of gas passage; wherein graphene oxide existing between the first semicrystalline-typed polymers induces formation of the second semicrystalline-typed polymer.
Abstract:
A polyester composition is suitable for food and beverage packaging. The polyester composition is obtained by blending: (a) 90-97 wt. % of a thermoplastic polyester selected from polyethylene terephthalate, polyethylene naphthalene, and mixtures thereof, (b) 2-6 wt. % of MXD6, (c) 1-5000 ppm of a cobalt salt, (d) 0.1-1000 ppm ethylene glycol (EG), and (e) 0.1-1000 ppm of pyromellitic dianhydride (PMDA).