Abstract:
The present disclosure relates to bioengineering approaches for producing biofuel and, in particular, to the use of a C1 metabolizing microorganism reactor system for converting C1 substrates, such as methane or methanol, into biomass and subsequently into biofuels, bioplastics, or the like.
Abstract:
The present application generally relates to methods to prepare a fuel from a liquid biomass by first producing the liquid biomass from a solid biomass by a thermal process, and then processing the liquid biomass with a petroleum fraction in the presence of a catalyst.
Abstract:
Petrochemical processes, including reforming processes are described herein. The reforming processes generally include introducing an input stream to a reforming unit having a reforming catalyst disposed therein, wherein the input stream includes a naphtha having an N+2A value of from about 65 to about 85 and contacting the input stream with the reforming catalyst and hydrogen to form an output stream.
Abstract:
Methods, systems, and devices for continuous fuel production are provided. Some embodiments may utilize two pyrolysis platforms, which may utilize biomass as a feedstock. One platform may generally utilize a high temperature pyrolysis process that may generate at least hydrogen and carbon monoxide. This high temperature gas stream may be fed into a lower temperature fast pyrolysis stream as a cover gas. The hot cover gas may react with the fast pyrolysis vapors hydrotreating while the vapors may still be hot and the molecules may still be small. The reacted product may then be distilled on the cool down. This may provide a rapid continuous process for the production of liquid fuels from biomass or other compounds that include carbon-oxygen-hydrogen (C—O—H) compounds.
Abstract:
The present disclosure relates to bioengineering approaches for producing biofuel and, in particular, to the use of a C1 metabolizing microorganism reactor system for converting C1 substrates, such as methane or methanol, into biomass and subsequently into biofuels, bioplastics, or the like.
Abstract:
Disclosed is a process of fueling a rocket engine or air-breathing engine for a hypersonic vehicle with a high performance hydrocarbon fuel characterized by a hydrogen content greater than 14.3% by weight, a hydrogen to carbon atomic ratio greater than 2.0 and/or a heat of combustion greater than 18.7 KBtu/lb. The disclosed fuels generally have a paraffin content that is at least 90% by mass and a C12-C20 isoparaffin content of at least 40% by mass.
Abstract:
A process and system for producing liquid and gas fuels and other useful chemicals from carbon containing source materials comprises cool plasma gasification and/or pyrolysis of a source material to produce synthesis gas using the produced synthesis gas for the production of a hydrocarbon, methanol, ammonia, urea, and other products. The process and system are capable of sequestering carbon dioxide and reducing NOx and SOx.
Abstract:
The present invention is directed to the modification of the hydrocarbon production sequence of operations including the Fischer-Tropsch process for the production of hydrocarbon fuels in an efficient manner, along with the production of commercially valuable co-products from by-products of the hydrocarbon production process.
Abstract:
An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapours are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results are the maximum production of formulated syndiesel without the presence or formation of low value by-products.
Abstract:
The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to fuels and chemicals. The invention includes methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C2+O1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C2+O1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.