Abstract:
A slide member which is excellent in the initial running-in property and can provide an excellent sliding property even under a strict sliding condition and, in particular, a slide member with a solid lubrication coating film which is excellent not only in the friction property but also in the wear resistance under the fluid lubrication, boundary lubrication and dry lubrication conditions. The slide member includes a solid lubrication coating film on a flat-plate-shaped base member, characterized in that, in the surface of the slide member, there are formed a plurality of concentrical grooves extending in the peripheral direction of the slide member surface, and, between the mutually adjoining ones of the grooves, there are formed ridge portions respectively.
Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which can be prevented from galling during repeated fastening and loosening without application of a compound grease. A solid lubricant coating which comprises a lubricating powder such as molybdenum disulfide and a resin binder is formed on the contact surface of at least one of the pin and the box. The coating is formed by applying a coating fluid and drying the applied coating by first stage heating in the temperature range of from 70null C. to 150null C. and second stage heating in the range of from higher than 150null C. to 380null C. The resulting solid lubricant coating has a hardness of 70-140 on the Rockwell M scale and an adhesive strength of at least 500 N/m as determined by the SAICAS (Surface And Interfacial Cutting Analysis System) method, and it exhibits excellent galling resistance even in the environment of high-temperature oil wells. Inclusion of ultraviolet screening fine particles such as titanium oxide fine particles in the solid lubricant coating increases the rust preventing properties of the threaded joint.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.
Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which guarantees galling resistance and gas tightness in a stable manner without application of a compound grease. A solid lubricating coating comprising a lubricating powder (e.g., molybdenum disulfide) and an organic or inorganic binder is formed on the contact surface of at least one of the pin and the box. The proportion of area of a cross section along the thickness of the solid lubricating coating which is occupied by secondary particles of the lubricating powder having an equivalent circular diameter of 15-60 &mgr;m is from 5-90%. Alternatively, the solid lubricating coating comprises, in addition to the lubricating powder, a fibrous filler (e.g., inorganic whiskers) in such an amount that the mass ratio of the fibrous filler to the binder is 0.01-0.5. As a result, galling resistance is improved, particularly at high temperatures.
Abstract:
An aqueous coating agent comprising a hydrophilic resin; a solid lubricating agent comprising MoS2, antimony oxide, and at least one antimony sulfide selected from the group consisting of Sb2S3 and Sb2S5; and water; wherein the weight ratio of MoS2 to antimony sulfide is from 1:0.05 to 1:1.2 and the weight ratio of the solid lubricating agent to the hydrophilic resin is from 0.7:1 to 3:1.
Abstract translation:一种包含亲水性树脂的水性涂料; 包含选自Sb 2 S 3和Sb 2 S 5的MoS 2,氧化锑和至少一种锑硫化物的固体润滑剂; 和水; 其中MoS 2与硫化锑的重量比为1:0.05至1:1.2,固体润滑剂与亲水性树脂的重量比为0.7:1至3:1。
Abstract:
Compositions and methods for ballistic conditioning firearm projectiles, firearms, and firearm components such as bores of barrels, by applying to such items a conditioning composition selected from the group consisting of hexagonal boron nitride, graphite, tungsten disulfide, antimony trioxide, talc, mica, and mixtures thereof, suspended in a carrier comprising a volatile solvent, and a binder selected from the group consisting of cellulosic-, alkyd- and acrylic-resins.
Abstract:
Abstract of DisclosureA lubricant composition is disclosed comprising a superabsorbent polymer combined with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. In the composition, the material for decreasing friction comprises a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A method of lubricating a surface is also disclaosed comprising coating said surface with the lubricating composition comprising the superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
Abstract of DisclosureA process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, and acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft copolymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbant polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer a with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A body of anti-friction material with reduced wear is formed of at least one carbon filling and a binder matrix of synthetic resin. The body of anti-friction material contains a phosphate, especially a phosphate of di- or pyrophosphoric acid, which is fixed in fine pulverized form in the binder matrix.