Abstract:
The invention pertains to a hydropneumatic suspension system, in particular for motor vehicles, with at least one hydraulic strut (2) that acts upon at least one hydropneumatic piston-type accumulator (6) during deflection and rebound movements. The piston-type accumulator (6) has a separating piston (22) that separates the hydraulic accumulator chamber (24) from a spring chamber (26) containing a compressible medium, in particular a gas. A hydraulic pressure (P.sub.h) acts upon the separating piston (22) from the side of the accumulator chamber (24) and a pneumatic pressure (p.sub.p) acts upon the separating piston from the side of the spring chamber (26), with at least one supplementary spring force (F.sub.F ;F.sub.F1 ;F.sub.F2) acting upon the separating piston (22) of the piston-type accumulator (6) in addition to the forces (F.sub.h,F.sub.p) resulting from charging the separating piston (22) with the hydraulic pressure (P.sub.h) and the pneumatic pressure (p.sub.p). This supplementary spring force is generated by at least one spring element (28;34;36) that is arranged outside of the spring chamber (26).
Abstract:
An undulated diaphragm, which has an approximately circular, flat plate-shaped central portion and a peripheral portion composed of a series of alternate, approximately concentric convex and concave portions, is clamped between two undulated container members each having an approximately bowl-shaped recess. The recesses of the container members are each composed of a series of alternate, approximately concentric concave and convex portions, which are complementally formed to correspond to the approximately concentric convex and concave portions of the diaphragm when extended. When the pressure in one recess is raised, the diaphragm successively moves toward the other recess and finally comes in contact with the second recess completely and snugly fits thereto. When the pressure in the first recess is lowered, the diaphragm successively moves toward the first recess and finally comes in contact with the first recess completely and snugly fits thereto. Deformation of the diaphragm during movement is restricted by virtue of the elasticity and rigidity of the diaphragm and the structure thereof, which includes a series of alternate, approximately concentric convex and concave portions. Thus, the diaphragm regularly extends and contracts without causing local inversion of the direction of bending during the movement.
Abstract:
A thin walled membrane type diaphragm particularly for liquid pressure accumulators and a method of production is disclosed comprising membrane made from rubber, synthetic rubber, P.V.C. or like suitable material including a neck portion forming the opening of the diaphragm and adapted to be mounted in the neck of a pressure tank and a closed tank region or body region which is formed from cruciform pleats which may be symmetrical such that the dimension of the body portion is reduced for a given volume of body region.The moulding of the diaphragm in this form enables a diaphragm of greater internal capacity to be moulded in a given sized injection moulding such that the core size of the moulding machine can be readily removed through the base region of the diaphragm.
Abstract:
A liquid accumulator comprises a generally cylindrical receptacle (10) having a flexible membrane (14) dividing the interior of the receptacle into a liquid chamber (15) and a gas chamber (17). The membrane comprises a hose which is open at both ends, one of which is bent inwards and conveyed through the hose and the ends of the hose are interconnected to form outer and inner membrane walls between which said liquid chamber is enclosed.
Abstract:
This invention comprises four hydraulic muscle pumps connected to four hydraulic dynamic muscles in hermetically sealed pairs to transfer tensive forces from a local to a remote location for use in actuating the articulation section of a borescope or endoscope.
Abstract:
The pressure accumulator (10) comprises a cylindrical housing (12) having a bore (14) with a piston received slidably therein. The piston (30) has an H-shaped cross section and includes a reduced diameter portion (34) extending longitudinally along the piston (30), and a sealing device (36, 38) disposed at each end of the reduced diameter portion (34). A cylindrical sleeve (44) is received in the reduced diameter portion (34) such that each end of the sleeve (44) abuts a respective sealing device (36, 38). The housing (12) has an exterior circumferential groove (20) with an O-ring (26) therein, and a radial opening (22) extending between the circumferential groove (20) and bore (14). Alternatively, the piston (30) may have a longitudinal opening (61) extending from one side of the piston to grooves (63, 64) at the other end (32), the grooves (63, 64) receiving a ring (72) which is subjected to fluid pressure transmitted through the longitudinal opening (61) and expanded radially outwardly against an angled portion (73) of a force-transmitting member (74) which moves longitudinally against seals (76, 77) disposed in one of the grooves (63, 64).
Abstract:
A tank formed using two half shells may be used as an expansion tank, expansion equalizer, pressurized fluid buffer tank or the like. Two half shells are provided with a projecting flared profile having a first section angled outwardly from the wall and a flange directed perpendicularly outwardly. The tank halves are joined by abutting the flanges, and the angularly offset sections adjacent the flanges form a bearing area or seat for sealing with an internal diaphragm. The diaphragm separates the tank into sections and is arranged at its end to receive and positively hold a ring of a profile complementary to the internal profile defined by the outwardly flaring sections adjacent the flanges of the tank. The flanges can be folded over one another and against the wall of the tank to physically attach the half shells.
Abstract:
A hydraulic device, such as a hydropneumatic piston accumulator, having a freely displaceable piston which divides the cylinder into a liquid chambers and a gas chamber on opposite sides of the piston. In order to reduce the friction of the piston seals and the heat produced thereby and at the same time guarantee an effective sealing the piston during its initial or terminal movement close to its end position cooperates with a second sealing member at the end wall of the liquid chamber through a first sealing member, and between these sealing members a friction seal is arranged for preventing back flow of liquid from the liquid chamber to the inlet at the end wall but in flow of liquid in the opposite direction in additional the first sealing member is axially displaceable in relation to the piston to a limited extent.
Abstract:
The diaphragm of the invention is for expansion tanks comprising a pair of shell halves and is for interposition between such shell halves to seal the joint between the shell halves and to anchor the diaphragm so as to divide the tank into a pair of chambers. The diaphragm includes a central sheet of elastomeric material terminating in a peripheral edge that includes an outer peripherally extending column integral with the central sheet and having a pair of integral flange elements and a central web element extending inwardly therefrom. Each of the flange elements is spaced from the central web element to form an annular slot therewith. The slots are dimensioned so as to releasably and sealingly receive the respective skirts of the shell halves.
Abstract:
The present invention relates to the method of manufacturing a pressure vessel for use as a hydraulic accumulator, pulse dampener or like apparatus employing an elastomeric bladder member, from a cylindrical member which includes the steps of deforming a first end of the member to provide an essentially hemispherical portion having an oil port, installing the elastomeric bladder assembly within said cylindrical member while the other end of said member remains in its essentially cylindrical configuration, and thereafter inwardly deforming the second end of said member while heating the same, said last mentioned heating and deforming steps being carried out while injecting through the last mentioned end a stream of cooling fluid which follows the internal wall portions of the bladder to minimize the possibility of heat damage to the bladder.