Abstract:
A valve system includes: a valve; a hydraulic cylinder attached to at least a portion of the valve; and at least a first accumulator in fluid communication with the hydraulic cylinder. The first accumulator includes: (i) a first end having a fluid inlet and a fluid outlet; (ii) a second end having a gas inlet; and (iii) a body positioned between the first end and the second end and which includes a fluid chamber and a gas chamber separated by a flexible separating member. The hydraulic cylinder is configured to close the valve in response to pressure provided by fluid distributed from the first accumulator.
Abstract:
The method of safely handling compressed gas in a dual bottle subsea accumulator during service operations comprising providing a gas bottle for the primary purpose of storing gas which will be compressed to provide accumulated energy, providing a hydraulic bottle with the primary purpose of converting the energy stored in the gas bottle into pressurized hydraulic supply fluid, providing interconnecting plates at the top and bottom of the gas bottle and the hydraulic bottle with porting to communicate the gas from the gas bottle to the hydraulic bottle, providing a first closure valve in a protected position within the top of the gas bottle, providing a second closure valve in a protected position within the bottom of the gas bottle, expelling a majority of the gas from the hydraulic bottle into the gas bottle, closing the first closure valve and the second closure valve, and removing the interconnecting plates from the gas bottle and the hydraulic bottle, and servicing the hydraulic bottle.
Abstract:
A bladder and attachment member assembly for use with a container comprises an elastomeric gas-filled bladder comprising a valve stem. A first attachment member is disposed over the valve stem within the container with the bladder. A second attachment member is disposed over the valve stem and over the first attachment member. The second attachment member is outside of the container interposed between the valve stem and a container opening. Rotational movement of the valve stem is fixed relative to one or both of the first and second attachment members. In an example, the valve stem comprises one or more surface features that register with one or more surface features of the first and/or second attachment member to thereby fix relative valve stem rotational movement. In an example, the valve stem surface feature is a flat surface that registers with a flat surface of the second attachment member inside diameter.
Abstract:
A method and apparatus for adaptively controlling a hydraulic press comprising a hydraulic drive unit for lifting and lowering a press ram. A piston chamber of the drive unit can be connected to a hydraulic accumulator formed by at least two groups of storage bottles, the connection established by hydraulic pipes that allows an expandable volume, stored in the storage bottles to supply the energy required for the press to perform a working stroke. Different filling pressures can be established in the storage bottles. A hydraulic accumulator can be adjusted to three operating modes, allowing a press controller to automatically analyze utilization and accordingly block individual groups or compartments of storage bottles, transfer the gas between storage bottles during a charging process at the end of the cycle, or adjust individual groups of storage bottles to different pressure levels. Advantageously, these three scenarios entail no waiting or transfer time.
Abstract:
An accumulator includes a cylinder for containing a working fluid and a first volume of pressurized gas, the gas and fluid being separated by a displaceable piston and a first seal contacting the piston and the cylinder, a reservoir carried on the piston for containing a second volume of pressurized gas, and a device that permits gas flow from the second volume into the first volume.
Abstract:
Embodiments relate to systems and methods for transferring power from a vehicle drive train to a hydraulic pump. One aspect of the present invention provides system including a torque converter; a torque converter hub connected to at least the torque converter; and a synchronous drive system coupled to at least the torque converter.
Abstract:
An integral accumulator/reservoir system including a low pressure vessel having a low-pressure vessel wall defining a low-pressure vessel cavity; a high-pressure accumulator having a high-pressure accumulator wall defining a high-pressure accumulator cavity, the high-pressure accumulator being disposed in the low-pressure vessel cavity, the high-pressure accumulator wall including an aluminum layer; a flexible bladder, the flexible bladder being disposed in the high-pressure accumulator cavity; and a sensor module operably connected to the aluminum layer.
Abstract:
The invention relates to a method for producing piston-type accumulators comprising an accumulator housing (10) and a separating piston which can be displaced in a longitudinal direction inside the accumulator housing (10) and separates two working spaces located therein. The end faces of the accumulator housing are sealed by means of one respective cover part (20). Previously known production methods are further improved due to the fact that the cover part (20) is fixed on one side (40) thereof via the free longitudinal edge (32) of the accumulator housing (10), which is displaced towards the cover part (20) in order to do so, such that a functionally and positionally secure connection of a cover part is ensured within the housing of a piston-type accumulator without using standard threaded connections.
Abstract:
A hydraulic accumulator, especially a piston accumulator, includes an accumulator housing (10) with at least one gas chamber (12) and a fluid chamber (14). These chambers are separated from each other by a separating element (16). At least one of these chambers (12, 14) can be filled with a pressure medium or at least partially emptied through at least one valve control unit (26) which has switching valves (28, 30). One switching valve (28) is accommodated in a corresponding valve location (29), and can be moved in the direction of movement of the separating element (16) from an opening position into closing position and vice-versa. Expensive line network between the hydraulic accumulator and the valve control unit is avoided. Sealing or leakage problems, such as are common in a line network, never occur. The valve control unit (26) is accommodated in a valve block (24) which is independent from the housing (10). The valve block (24) has an additional valve location (31) for an additional switching valve (30) for performing another switching task. The valve locations (29, 31) are configured essentially identically and are situated eccentrically in relation to the longitudinal axis (33) of the hydraulic accumulator for modular use of the switching valves (28, 30), which are configured as identical parts.
Abstract:
A storage device for a liquid medium has a housing having an interior provided with at least one partitioning element dividing the interior into a first chamber for receiving the liquid medium and into a second chamber filled at least partially with a gas under pressure. The gas keeps the liquid medium in the first chamber under pressure. The at least one partitioning element is formed at least partially of an expandable bellows fastened pressure-tightly to a lid of the housing.