Abstract:
A method of generating heat in a boiler such as by combusting a fuel material which includes a plurality of densified fuel pellets is provided. The densified fuel pellets may be formed by a process which includes compacting a mixture which includes about 5 to 15 wt. % molten thermoplastic polymeric material and at least about 75 wt. % cellulosic material. Many embodiments of the method are suitable for use in a coal-fired furnace and/or in other industrial boiler applications.
Abstract:
Various aspects of the present invention generally relate to a fuel composition, for example, that may be used as a fire starter for igniting barbecue charcoal, firewood, campfires, pellet stoves, and the like, and/or as a fuel material, e.g., for heating or cooking. A fuel composition is described in some embodiments that includes corn cob particles and/or other plant-derived particles in which a liquid fuel has been absorbed. The fuel composition may be used as a fuel material and/or to initiate combustion of a regular fuel material such as charcoal, firewood and pellet stove fuel.
Abstract:
Sorbent compositions containing halogen and calcium are added to coal to mitigate the release of sulfur and/or other harmful elements, including mercury, into the environment during combustion of coal containing natural levels of mercury.
Abstract:
A flue gas additive is provided that includes both a nitrogenous component to reduce gas phase nitrogen oxides and a halogen-containing component to oxidize gas phase elemental mercury.
Abstract:
Sorbent components containing halogen, calcium, alumina, and silica are used in combination during coal combustion to produce environmental benefits. Sorbents such as calcium bromide are added to the coal ahead of combustion and other components are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components reduce emissions of elemental and oxidized mercury; increase the level of Hg, As, Pb, and/or Cl in the coal ash; decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and make a highly cementitious ash product.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
Abstract:
Sorbent compositions containing halogen and calcium are added to coal to mitigate the release of sulfur and/or other harmful elements, including mercury, into the environment during combustion of coal containing natural levels of mercury.
Abstract:
The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for preventing the poisoning and/or contamination of an SCR catalyst. In another embodiment, the method and apparatus of the present invention is designed to protect an SCR catalyst, while simultaneously providing emission control.
Abstract:
Methods involve adding sorbent components, such as calcium oxide, alumina, and silica, as well as optional halogens as part of environmental control. Use of the sorbents leads to significant reductions in sulfur and mercury emissions that otherwise would result from burning coal. Use of the sorbents leads to production of waste coal ash that, while higher in mercury, is nevertheless usable as a commercial product because the mercury in the ash is non-leaching and because the coal ash has a higher cementitious nature by virtue of the increased content of the sorbent components in the ash. Thus, the methods involve adding powders having qualities that lead to the production of a cementitious coal ash while at the same time reducing emissions from a coal burning facility.
Abstract:
Biomass is devolatilized to produce both a combustible fuel (syngas) and activated carbon. The activated carbon is used as an adsorbent to capture a contaminant, such as mercury, and stored in a landfill, is impregnated with components with inherent fertilizer properties and tilled into arable land, is used along with coal in an electric power generation facility, or is used to remove mercury or other heavy metals from the flue gas of a coal fired power generation station prior to being stored so as to sequester both carbon and the heavy metal. Thus, both the carbon and the adsorbed mercury or other chemical are sequestered.