Abstract:
In a sensor apparatus, in particular a sensor apparatus for detecting ambient conditions of a motor vehicle, wherein the sensor apparatus comprises at least one screen which predefines the detection angle of the sensor apparatus and a detector and wherein an optical component is disposed between the screen and the detector, a greater detection angle is to be achieved. This is achieved whereby the optical component has at least one first and one second concavely curved region, the first inner region is disposed adjacent to the optic axis, where the second region surrounds the first region and that the first region has a stronger concave curvature than the second region.
Abstract:
Electronic devices may include light sensors. The light sensors may include alignment features. The light sensors may be optically aligned with an aperture in an opaque structure. The opaque structure may be formed from an opaque material or a transparent material with an opaque coating. The light sensor may be mounted in a support structure that has been optically aligned with the aperture. The light sensor or the support structure may include extended portions that are transparent to ultraviolet light. Ultraviolet light may be transmitted through the extended portions to cure adhesive that attaches the light sensor or the support structure to the opaque structure. The light sensor may be optically aligned with the aperture by viewing the aperture through an opening in the support structure, by viewing the alignment features on the light sensor through the aperture or by gathering alignment data using the light sensor during alignment operations.
Abstract:
A selectable view angle optical sensor is disclosed. The selectable view angle optical sensor comprises a substrate, a photodiode array disposed on the substrate, a first optical shielding modulation layer disposed on a first plane and a second optical shielding modulation layer disposed on a second plane. The first plane is on the photodiode array, the second plane is on the first plane, and the first and second planes and a top surface of the photodiode array are substantially in parallel. The dimensions and configurations of the first and second optical shielding modulation layers limit a field of view of the photodiode array so that the photodiode array has selectable view angle function.
Abstract:
A confocal optical detector including a light source generating a first optical beam along an axis; an optoelectronic sensor; an optical focusing device, which receives and focuses the first optical beam; and a hole, which receives the first optical beam and is arranged between the optoelectronic sensor and the optical focusing device. The optoelectronic sensor is arranged between the light source and the hole. In addition, the optoelectronic sensor and the optical focusing device are aligned along the axis.
Abstract:
The luminance measuring apparatus for measuring the luminance of a road has an image pickup unit for picking up an image of the road, an input unit for inputting information concerning the road as an imaging target, and a luminance measuring unit for defining a luminance measurement target field A on the basis of the information input from the input unit and measuring the luminance within the luminance measurement target field A on the basis of an image picked up by the image pickup unit. The luminance measuring unit divides the luminance measurement target field A of the pickup image into a grid having a predetermined number of lattice intersection points MP in an equivalent of plan view, and allocates measurement points of luminance to the respective lattice intersection points MP.
Abstract:
A camera driving apparatus according to the present invention includes: a camera section with an imaging plane; a movable unit which houses the camera section inside and includes an attracting magnet and a convex partial sphere on its outer surface; a fixed unit which has a depressed portion in which a magnetic body and the movable unit are loosely fit, which brings the convex partial sphere of the movable unit into a point or line contact with the depressed portion under magnetic attractive force of the attracting magnet to the magnetic body, and which allows the movable unit to rotate freely on the spherical centroid of the first convex partial sphere; a panning driving section; a tilting driving section; a rolling driving section; a camera driving section which shifts an image sensor two-dimensionally in a plane that intersects with the optical axis at right angles and which rotates the image sensor on the optical axis; a first detector which detects the tilt angles of the camera section in the panning and tilting directions; a second detector which detects the angle of rotation of the camera section that is rotating in the rolling direction; and a third detector which detects the magnitudes of shift of the image sensor along the panning rotation axis and the tilting rotation axis.
Abstract:
An optical sensor includes: first and second light receiving elements on a semiconductor substrate; a light blocking film over the semiconductor substrate via a light transmitting film; and first and second openings corresponding to the light receiving elements and disposed in the light blocking film. First and second virtual lines are defined to extend from the centers of the first and second light receiving elements and pass through the centers of the first and second openings, respectively. At least one of elevation angles and left-right angles of the first and second virtual lines are different. The photosensitive area of the first light receiving element is larger than the aperture area of the first opening. The photosensitive area of the second light receiving element is larger than the aperture area of the second opening.
Abstract:
Sensors, systems including sensors, and methods of using such sensors and systems are provided. In one aspect, a sensor includes a sensor element at least partially positioned within the housing. The sensor element includes a plurality of interconnected segments with each segment comprising a pyroelectric crystal and wherein the sensor may generate a single, unitary signal upon exposure of any segment to infrared radiation.
Abstract:
A solar resource measurement system captures an orientation-referenced image within a field of view of a tilted surface that includes a skyline, detects the skyline within the orientation-referenced image to establish a set of zenith angles as a function of azimuth angles associated with the skyline, and determines a solar resource for the tilted surface from the orientation-referenced image and the set of zenith angles as the function of azimuth angles that are associated with the skyline.
Abstract:
A detecting apparatus for detecting an object includes at least a screen, at least a detecting unit and at least a holding unit. The screen is partial light-permeable and has a first surface and an opposite second surface. The object is disposed adjacent to the first surface of the screen. The detecting unit is disposed corresponding to the object and located adjacent to the second surface of the screen. The holding unit holds the relative distances between the screen, the object and the detecting unit. The detecting unit captures the image of the second surface of the screen so as to calculate the optical field distribution of the object. The detecting apparatus can measure the optical field distribution of an object quickly and has the advantages of low cost and high accuracy.