Abstract:
A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
Abstract:
A biochemical material detection system is provided, which is used to detect biochemical materials. A material to be detected is placed above a sensor module in the system. A light source is guided in by a light emitting device to measure a refractive index of the material to be detected or other parameters related to the material to be detected. Furthermore, a heat source generated by the light emitting device in the system is further isolated outside the sensor module, thereby preventing the heat source from influencing a sensed result to improve the accuracy of the sensed result.
Abstract:
An apparatus for optical measurement of a liquid or molten material, which has: a transparent container which has a bottom face and is capable of containing a to-be-measured material therein, with the bottom face at least having a flat face and being transparent; and an optical device that irradiates a light to the bottom face of the container and that detects and measures a reflected light from the bottom face; and a method for optically measuring a liquid or molten material using the apparatus.
Abstract:
The invention relates to a method for controlling flat glass forming by flowing a molten glass over a liquid tin layer contained in a forming vat wherein a forming characteristic quantity is measured above the glass surface during forming by means of beams generated by at least one absorption spectroscopy-based analyser, wherein the light beams generated by said analyser form a net above the glass surface. A device for carrying out the inventive method comprising an arm for supporting a vessel which comprises a retroreflecting means for receiving a light beam and transmitting it in an opposite direction parallel to an incident optical path is also disclosed.
Abstract:
An NDIR gas sensor methodology for the design of a dual-gas sensor for the detection of two gases having a mutually interfering infrared absorption band such as that for CO2 and H2O at around 2.70μ or N2O and CO at around 4.40μ. The output of this two-channel NDIR gas sensor remains drift-free over time and is also temperature independent because it uses three detection channels sharing the same sample chamber and all have exactly the same narrow band-pass filter. The first detection channel is filled with 100% nitrogen and its output is proportional to the concentration levels for both CO2 and H2O in the sample chamber. The second detection channel has two cells in series, one filled with a known concentration of H2O and another one with 100% CO2 gas, and its output is proportional principally only to the presence of H2O in the sample chamber. The third detection channel is filled with 100% CO2 gas and its output serves as the biased reference for this dual-gas NDIR gas sensor. Outputs from the three detection channels are used to produce a calibration curve for the combined presence of CO2 and H2O in the sample chamber and also a CO2-independent calibration curve for H2O for generating a methodology for determining simultaneously the concentration of both CO2 and H2O in the sample chamber.
Abstract:
In an imaging device, a cooling unit cools an imaging element. A storage unit stores table data representing correspondence relationships between signal values based on luminescences of detection targets, cooling temperatures, exposure times, and S/N ratios. A S/N calculating unit calculates a S/N ratio at a time when pre-imaging has been performed. A determination unit determines, from the table data and as a cooling temperature and an exposure time for the imaging, a combination of a cooling temperature and an exposure time with which the S/N ratio becomes equal to or greater than the reference S/N ratio on the basis of a result of comparison between the calculated S/N ratio and a predetermined reference S/N ratio. A control unit controls the imaging element and the cooling element such that a subject is imaged at the cooling temperature and in the exposure time that are determined.
Abstract:
NDIR gas sensing methodology is advanced which renders the output of an NDIR gas sensor, when implemented with this new methodology, to remain stable or drift-free over time. Furthermore, the output of such a sensor will also be independent of the temperature of an environ wherein the sensor is in physical contact. This method utilizes the same narrow band-pass spectral filter for the detection of the gas of interest for both the signal and the reference channels. By so doing, the two channels always receive radiation of the same spectral content from the infrared source of the sensor convoluted with that from any external elements exposed to the sensor. While the same sample chamber through which the gas of interest to be detected flows is shared by the two channels, the detector package for the reference channel is hermetically sealed with 100% of the gas to be detected instead of 100% N2 as for the signal detector. In so doing, the reference channel is rendered almost completely “blind” to the presence or absence of the gas of interest flowing in the common sample chamber thereby creating an absorption bias or difference between the two channels enabling the concentration of the gas of interest to be detected by ratioing the outputs of the two channels via calibration.
Abstract:
Thermally controlled enclosures that can be used with gas analyzers are described. The enclosures incorporate one or more phase changing materials that buffer ambient and internal heat loads to reduce the power consumption demand of mechanical or electronic heating apparatus. Maintenance of gas analyzer equipment at a consistent temperature can be important to achieving stable and reproducible results. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
An inspection apparatus can include a handset and an elongated inspection tube extending from the handset. For reduction of heat energy radiating from one or more components of the apparatus, the apparatus can include a particularly designed heat sink assembly.
Abstract:
The present invention relates to the use of Near-Infrared (NIR) spectroscopy to the application of the measurement of constituent concentrations of chemical based products typically having covalent bonding. Such constituent products may be fat, moisture, protein, and the like typically in liquid form or colloid suspensions. More specifically, the invention is directed toward an NIR analyzer with multiple detectors with no moving parts. The invention utilizes thermal control in conjunction with normalization algorithms to allow parallel processing of the measurements between a reference and at least one sample, which may provide more accurate results. In addition, this invention has the ability to use NIR in the third overtone and allows insitu processing, with no waste stream.