Abstract:
A liquid crystal display device of a multiple-domain in-plane switching mode applies to mutually engaged comb-shaped electrodes for each pixel region. The comb-shaped electrode has bent portions each in a double V shape which is formed as a comb-tooth pattern by causing a bent tip being bent into a V shape to protrude further outward. This structure stabilizes turning directions of liquid crystal molecules in the vicinity of a boundary between each two neighboring regions of multiple domains and suppresses display coloring attributable to a change in a view angle.
Abstract:
An active matrix liquid crystal display device includes substrates, a liquid crystal layer therebetween, video signal lines and scan signal lines formed on one of the substrates, and pixel electrodes connected to one of the video signal lines through an active device. Pixel areas, which are defined by the video signal lines and the scan signal lines which are formed in the shape of a matrix, have display electrodes, reference electrodes and the active device arranged therein. The display electrodes are arranged on one of the substrates, and the reference electrodes are arranged on another of the substrates, and each of the display electrodes and the reference electrodes has a slit. The slit of the display electrodes and the slit of the reference electrodes are shifted with respect to one another in plan view.
Abstract:
A liquid crystal display device includes a gate line formed on a substrate; first and second data lines crossing the gate line to form adjacent pixel regions in a direction of the gate line; pixel electrodes and common electrodes substantially parallel to each other and generating an in-plane electric field; a first pixel electrode line parallel to the first data line and spaced apart from the first data line by a first isolation distance; a second pixel electrode line spaced apart from the second data line by a second isolation distance; and a first common line parallel to the first data line and spaced apart from the first data line by a third isolation distance; a second common line spaced from the second data line by a fourth isolation distance, wherein the first isolation distance is shorter than the third isolation distance, and a parasitic capacitance between the first pixel electrode line and the first data line is greater than a parasitic capacitance between the second pixel electrode line and the second data line.
Abstract:
A thin film transistor array panel is provided, which includes: an insulating substrate; a plurality of first signal lines formed on the insulating substrate; a plurality of second signal lines formed on the insulating substrate and intersecting the first wire in an insulating manner; a pixel electrode formed in a pixel area defined by the intersections of the first signal lines and the second signal lines and including a plurality of subareas partitioned by cutouts and a plurality of bridges connecting the subareas; and a direction control electrode formed in the pixel area and including a portion overlapping at least one of the cutouts, wherein two long edges of each subarea are parallel to each other and the at least one of cutouts overlapping the portion of the direction control electrode defines one of two longest edges of the subarea.
Abstract:
In a vertically aligned mode LCD, a gate line and a storage line are formed on a substrate in parallel, and a storage electrode and a cover pattern are formed as branches of the storage line. The storage electrode is overlapped with an aperture of a common electrode formed on an upper substrate. The cover pattern is located between a pixel electrode and a data line to prevent a light leakage. Accordingly, an alignment error margin of the upper substrate and the lower substrate is increased, an aperture ratio is enhanced, and repairing the high pixel defect is possible. Further, the light leakage caused by a voltage of the data line is prevented.
Abstract:
A liquid crystal display device comprises a TFT substrate, a CF substrate, a liquid crystal with negative dielectric anisotropy filled between the substrates, a pixel electrode provided on the TFT substrate, and an auxiliary electrode formed around the pixel electrode. A slit for segmenting a pixel region into a plurality of sub-pixel regions is formed in the pixel electrode from the center portion of each pixel toward the periphery portion thereof. The auxiliary electrode has a transparent step film formed at a position corresponding to the slit of the pixel electrode in such a way as to overlie the auxiliary electrode. Molecules of the liquid crystal of each sub-pixel region are aligned toward center of the sub-pixel region from the circumference of the sub-pixel region by a horizontal electric filed applied between the pixel electrode and auxiliary electrode, and the shape of the end portion of the transparent step film.
Abstract:
Apertures are formed in the common electrode or in the pixel electrode of a liquid crystal display to form a fringe field. Storage capacitor electrodes are formed at the position corresponding to the apertures to prevent the light leakage due to the disclination caused by the fringe field. The apertures extend horizontally vertically or obliquely. The apertures in adjacent pixel regions may have different directions to widen the viewing angle.
Abstract:
The invention relates to suppression of high frequency resonance in an electro-optical device. The electro-optical device includes an optical waveguide formed in a substrate and a plurality of electrically floating electrode segments that are positioned on the substrate to intensify an electric field in the optical waveguide. The device also includes a RF ground electrode that is positioned on the substrate. The RF ground electrode defines a slot having a shape that suppresses modal conversion and propagation of high order modes in the RF ground electrode and in the plurality of electrically floating electrode segments, thereby suppressing modal coupling to the substrate. The device further includes a buffer layer formed on the upper surface of the substrate, on the plurality of electrically floating electrode segments, and in the slot. A driving electrode receives a RF signal that induces-the electric field in the optical waveguide.
Abstract:
A multi-domain liquid crystal display device includes: first and second substrates; a plurality of gate lines on the first substrate in a first direction; a plurality of data lines formed in a second direction to cross the first direction; a plurality of thin film transistors formed in a portion where the gate lines cross the data lines; a plurality of pixel regions between neighboring gate and data lines; a common auxiliary electrode around each pixel region; a plurality of pixel electrodes formed in each pixel region to connect with the thin film transistor; dielectric structures on the second substrate, the dielectric structures being controlled electric field with the common auxiliary electrode and being divided the pixel region into at least four domains; at least one or more additional structures formed at an end portion of the dielectric structures within the pixel region; an alignment film on at least one of the first substrate and the second substrate; and a liquid crystal layer between the first substrate and the second substrate.
Abstract:
A liquid crystal display device having a pair of substrates and a liquid crystal layer interposed between the pair of substrates. One of the pair of substrates includes a plurality of scanning electrodes, a plurality of signal electrodes, a plurality of thin film transistors arranged in the vicinity of crossing points of the scanning electrodes and the signal electrodes, a plurality of common electrodes, and a plurality of pixel electrodes arranged between each of the common electrodes. The other of the pair of substrates has color filters, an insulating film for flattening the color filters directly arranged on the color filters, and an orientation control film arranged on the insulating film.