Abstract:
An image projection device, including: at least one waveguide formed in a substrate; and at least one extraction device including a plurality of extraction cells coupled to different areas of the guide, each cell being capable of being electrically activated to extract light from the guide and project this light along a predetermined projection direction, wherein different extraction cells have projection directions with different orientations.
Abstract:
The present invention relates to a controllable diffraction device for a light modulator device. The controllable diffraction device comprises at least two substrates, at least one electrode on each of said substrates facing each other, and liquid crystals forming at least one liquid crystal layer arranged between said electrodes on said substrates. The orientation of the liquid crystals is controllable by a voltage supplied to the electrodes. The liquid crystal layer is provided on at least one alignment layer arranged on at least one electrode on said substrates. The liquid crystals close to the alignment layer are pre-oriented by at least one pre-tilt angle relative to the alignment layer such that the resulting light diffraction in opposite spatial directions is approximately equal.
Abstract:
Apparatus and method embodiments are provided for implementing a wavelength selective switch (WSS). The embodiments use combinations of switchable polarization grating (SPG) and LC cells and combinations of polymer polarization grating (PPG) and LC cells to achieve 1×N WSS systems. An embodiment optical switch includes a liquid crystal cell and a SPG cell adjacent to the liquid crystal cell. The SPG includes liquid crystal material between two photo-alignment layers, an electrode layer overlying each photo-alignment layer, and a glass substrate overlying each electrode layer. An embodiment method includes polarizing an incident light beam at a circular polarization before diffracting, at a polarization grating, the polarized incident light beam in a determined angle that corresponds to a diffraction order in accordance to the circular polarization of the incident light beam and a hologram pattern direction formed inside the polarization grating.
Abstract:
The present invention discloses a liquid crystal grating, a manufacturing method and a drive method thereof, and an optical phased array. In the liquid crystal grating, plurality of first electrodes are formed on a lower substrate with first gaps formed between adjacent first electrodes, second electrodes are further provided above the first gaps with second gaps formed between adjacent second electrodes, and an insulation layer is provided between the first electrodes and the second electrodes. When voltages are applied to the first electrodes and the second electrodes, continuously and smoothly changing electric field is generated inside the liquid crystal grating, and then phases of incident light may be controlled continuously and smoothly, which improves the ability of the liquid crystal grating to modulate light beam.
Abstract:
A wavelength selective switch includes a light input and output part in which light input/output ports are arranged in a predetermined direction, the light input/output ports including a first port for inputting light, a second port for outputting the light, and at least one third port for inputting or outputting the light, a wavelength dispersive element optically coupled to the light input and output part, and a phase modulation element which includes a plurality of pixels performing phase modulation and diffractively deflects an optical path of the light arriving from the first port via the wavelength dispersive element by presenting a diffraction-grating-shaped phase modulation pattern, and the light input/output ports are arranged so that a 1st order light of the light is incident on the second port, and the first port and the third port are spaced from an optical axis of a −1st order light of the light.
Abstract:
Described herein is a tunable optical filter (1). The filter includes a phase manipulation layer in the form of a liquid crystal material (3) and a diffractive layer in the form of a diffraction grating (5) sandwiched between an upper glass layer (7) and lower silicon layer (9). Grating (5) includes a grating structure (11) etched therein for angularly diffracting an input optical signal into a plurality of constituent wavelength components according to wavelength. Material (3) includes a two-dimensional array of independently addressable pixels (13), each pixel configured for receiving a drive signal and, in response to the drive signal, selectively modifying the phase of the wavelength components incident onto each pixel to directionally steer the components along respective angularly separated paths. By suitable steering of the wavelength components, at least one wavelength component is coupled along a predetermined collection path to an optical system such as a laser cavity.
Abstract:
Described herein is a tunable optical filter (1). The filter includes a phase manipulation layer in the form of a liquid crystal material (3) and a diffractive layer in the form of a diffraction grating (5) sandwiched between an upper glass layer (7) and lower silicon layer (9). Grating (5) includes a grating structure (11) etched therein for angularly diffracting an input optical signal into a plurality of constituent wavelength components according to wavelength. Material (3) includes a two-dimensional array of independently addressable pixels (13), each pixel configured for receiving a drive signal and, in response to the drive signal, selectively modifying the phase of the wavelength components incident onto each pixel to directionally steer the components along respective angularly separated paths. By suitable steering of the wavelength components, at least one wavelength component is coupled along a predetermined collection path to an optical system such as a laser cavity.
Abstract:
A liquid crystal panel (2) is a vertical alignment type liquid crystal panel using a horizontal electric field driving system which performs display by driving a liquid crystal layer (50) interposed between substrates (10, 20) in a horizontal electric field, each pixel includes three sub-pixels (6R, 6G, and 6B), which are of red, green, and blue, comb-shaped electrodes (14, 15) include a function as a diffraction grating with the comb-shaped electrodes (14, 15) and spaces between the comb-shaped electrodes (14, 15), and pitch distances (D) between electrodes are set such that an optical diffraction efficiency for red wavelength and an optical diffraction efficiency for green wavelength are greater than an optical diffraction efficiency for blue wavelength. Thus, it is possible to provide a liquid crystal panel and a liquid crystal display apparatus having a wide viewing angle with less color change with a simple configuration.
Abstract:
A method and apparatus for designing a device to operate in a coupling mode, a detection mode, or a reflection mode for incident light. The incident light has a wavelength λ and is incident upon a semiconductor structure of the device at an angle of incidence (θi). A voltage (V) is applied to the device. Each mode may be designed for an ON state and/or OFF state. For the coupling mode and detection mode, the ON state and OFF state is characterized by high and low absorption of the incident light, respectively, by the semiconductor structure in conjunction with the applied voltage V and angle of incidence θi. For the reflection mode, the OFF state and ON states is characterized by a shift in the optical path length of λ/2 and about zero, respectively, in conjunction with the applied voltage V and angle of incidence θi.
Abstract:
A display apparatus and a polarizer for multi-domain vertical aligned liquid crystal display apparatus are provided. The display apparatus includes a liquid crystal display device, a first polarizer, a second polarizer and a diffractive optical element. The first polarizer is disposed on the first substrate. The second polarizer is disposed between the second substrate and the backlight module. The diffractive optical element includes a first diffraction grating and is disposed on a light emitting side of the first polarizer. An azimuth angle the first diffraction grating is counted from an absorbing axis of the first polarizer as standard.