Abstract:
A work vehicle includes an automatic running control unit 51 that executes automatic running based on an own vehicle position and a target running path; a manual running control unit 52 that executes manual running based on an operation signal from a manual running operation unit 9 that is manually operated; a first control unit 61 that executes a change from manual running to automatic running, a manual stoppage of the vehicle being a condition for the change; a second control unit 62 that executes a forced stoppage of the vehicle when changing from automatic running to manual running; and a third control unit 63 that executes a forced stoppage of the vehicle by temporarily suspending automatic running in response to a suspend instruction from the manual running operation unit 9, and resumes automatic running in response to a resume instruction from the manual running operation unit 9.
Abstract:
An autonomous travel work vehicle (1), which is provided with a position calculation means that measures the device body position by means of a satellite positioning system, a steering actuator (40) that operates a steering device, an engine rotation control means, a transmission means (44), and a control device (30) that controls each of same, is caused to autonomously travel, along a set travel path stored in the control device (30), by an accompanying travel work vehicle (100) that works while accompanying the travel of the autonomous travel work vehicle (1) by means of attended operation and that is mounted with a remote operation device (112) that can operate the autonomous travel work vehicle, and the control device (30) halts autonomous travel when a signal disruption from the satellites, a large deviation from the set travel path, an abnormal sensor value, fuel exhaustion, or the like is detected.
Abstract:
An autonomously traveling work vehicle provided with: a position calculation means for using a satellite positioning system to measure the position of the vehicle body so that, when a person approaches the autonomous travel work vehicle, the person or an operator will be alerted and safety can be improved; and a control device for causing the autonomously traveling work vehicle to automatically work and travel along a set travel route; wherein a person detection sensor is provided to the autonomously traveling work vehicle and connected to the control device, and the control device performs a control so as to stop the autonomously traveling work vehicle from traveling when, while work is being performed during autonomous travel within a set work area, the person detection sensor detects a person within a fan-shaped first setting range having, as the radius, the maximum distance for the vehicle body to come to a stop after the intrusion of a person is detected while the vehicle is traveling at a working speed.
Abstract:
In the prior art, detection sensitivity was fixed for an obstacle detection means provided to an autonomous travelling service vehicle; therefore, in the present invention an autonomous travelling service vehicle is provided with a position calculation means that determines the position of the chassis using a satellite positioning system, and with a control device that automatically drives the vehicle along a set travel route and causes the vehicle to execute the service, wherein an obstacle sensor that acts as an obstacle detection means for detecting whether or not an obstacle is present around the autonomous travelling service vehicle and a sensitivity adjustment means for adjusting the sensitivity of the obstacle sensor are provided, and the sensitivity of the obstacle sensor is adjusted by the sensitivity adjustment means so as to be high within a set work area and low outside the set work area.
Abstract:
A system includes a first operation device configured to perform an operation with respect to a first target; at least one sensor configured to acquire analog information from the first target; and a control device configured to identify the first target based on at least one type of first digital information among a plurality of types of digital information relating to the first target acquired from the analog information acquired by the at least one sensor, and control the operation by the first operation device with respect to the first target identified based on at least one type of second digital information different from the first digital information among the plurality of types of the digital information.
Abstract:
The present invention is related to a method for harvesting crops from a field and to a method for working a field by towing an apparatus such as a tilling apparatus, wherein the methods of the invention employ manned and unmanned vehicles. The operation and movement of the unmanned vehicles is controlled by the drivers of the manned vehicles which are continuously in the vicinity of the unmanned vehicles. The harvesting method involves at least the driver of a harvesting vehicle such as a combine harvester and the driver of a crop collecting vehicle such as a truck, wherein the drivers control the operation of one or more unmanned crop carts, operated to receive harvested crops from the harvesting vehicle during a harvesting phase and deliver harvested crop to the crop collecting vehicle during a subsequent delivery phase The control effected by the driver of the harvesting vehicle and the driver of the collecting vehicle is such that each driver is capable of visually inspecting the crop cart's operation during the totality of the harvesting and delivery phases respectively. The invention is equally related to a method for working an agricultural field wherein an agricultural apparatus, such as a tillage apparatus, is towed through the field, by one or more unmanned vehicles, while the operation of the unmanned vehicles is controlled by the operator of a manned vehicle that is moving along with the unmanned vehicles through the field.
Abstract:
A vehicle guidance system for an agricultural vehicle is described which includes an optical imaging device collecting information of field characteristics, and a steering control device receiving the information of field characteristics transmitted from the optical imaging device. The steering control device having a steering actuator including a motor operatively connected to a hub adaptor. The hub adaptor is removably mountable to a central hub of a steering wheel of the agricultural vehicle in fixed rotary engagement, wherein when the hub adaptor is engaged to the central hub of the steering wheel, rotation of the hub adaptor by the motor causes corresponding rotation of the steering wheel. The steering control device thereby autonomously rotates the central hub of the steering wheel in response to the information of field characteristics received by the steering control device and the vehicle guidance system thereby steers the agricultural vehicle.
Abstract:
A system is provided that automatically assesses weight rating characteristics of a truck and trailer combination. The system coordinates movement and unloading functions of the grain cart to automatically load the trailer to correspond to a target total weight value and a target weight distribution value based on axle weight ratings of the axles of the truck and trailer combination.
Abstract:
An animal feeding vehicle includes a movement control system, a GPS receiver for generating a first set of parameters including location information, a proximity sensor for generating a second set of parameters including spatial information, a position sensor for generating a third set of parameters including motion information, a feeding system including a feeding control system for feeding animals based on a fourth set of parameters. A control unit receives the first, second, third, and fourth sets of parameters, and defines a first mode in which the user controls the movement control system and the feeding control system, and in which the control unit records data representing the first, second, third, and fourth sets of parameters; and a second mode in which the control unit controls the movement control system and the feeding system by comparing recorded data with the first, second, third, and fourth sets of parameters.
Abstract:
A single imaging device collects image data of a storage portion. A container module identifies a container perimeter of the storage portion in at least one of the collected image data. A spout module is adapted to identify a spout of the transferring vehicle in the collected image data. An arbiter determines whether to use the image data based on an evaluation of the intensity of pixel data or ambient light conditions. An alignment module is adapted to determine the relative position of the spout and the container perimeter and to generate command data to the propelled portion to steer the storage portion in cooperative alignment such that the spout is aligned within a central or target zone of the container perimeter.