Abstract:
A method for enhancing operational efficiency of a remote vehicle using a diagnostic behavior. The method comprises inputting and analyzing data received from a plurality of sensors to determine the existence of deviations from normal operation of the remote vehicle, updating parameters in a reference mobility model based on deviations from normal operation, and revising strategies to achieve an operational goal of the remote vehicle to accommodate deviations from normal operation. An embedded simulation and training system for a remote vehicle. The system comprises a software architecture installed on the operator control unit and including software routines and drivers capable of carrying out mission simulations and training.
Abstract:
A robot surveillance system includes a robot chassis, a drive subsystem for the chassis, a dock on the chassis, and a payout device associated with the chassis. A flying module is configured to be received in the dock and includes at least one rotor powered by a motor and a body portion including an imager. A tether is coupled to the payout device of the robot and to the flying module for allowing the flying module to climb out of the dock when powered to gain elevation for surveillance and imaging via the imager and for retracting the flying module to land on the robot and reside in the chassis dock after surveillance.
Abstract:
Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.
Abstract:
A robotic system comprising a robotic platform; a follow-path functionality enabling the robotic platform to follow a leading soldier, at least selectably, without reliance on GPS; and a Human Machine Interface between the platform and a leading soldier.
Abstract:
A network for combat control of ground-based units, such as combat vehicles, in real time, may obtain information is concerning the units comprised in the network for the evaluation of threats and the calculation of a response. The units may be divided into clusters with a central unit in each cluster and at least one client unit in each cluster, which client units are arranged to communicate with the associated central unit. Each unit comprises a control computer, radio, amplifier and antenna for communication with other units. The central unit may control units comprised in an associated cluster on the basis of threat evaluation and response calculation carried out in the central unit on the basis of information communicated from other units and on the basis of information obtained by means of its own equipment.
Abstract:
A cruising surveillance system comprises a plurality of wireless beacons and an unmanned vehicle. Each of the wireless beacons emits a unique wireless sequential signal. The unmanned vehicle is equipped with an infrared object sensor, a video camera recorder, a wireless transceiving unit, a central processing unit, a driving unit, and a power supply unit. The central processing unit compares the wireless sequential signal received from the wireless transceiving unit, and makes the driving unit to move the unmanned vehicle to cruises along a route defined by the wireless beacons. When the object sensor detected a suspected object, the central processing makes the driving unit to move the unmanned vehicle to approach thereto, and makes the video camera recorder to record the suspected object, and transmits a video recording of the suspected object to a surveillance center via the wireless transceiving unit.
Abstract:
This invention provides impact detection and vehicle cooperation to achieve particular goals and determine particular threat levels. For example, an impact/penetration sensing device may be provided on a soldier's clothing such that when this clothing is impacted/penetrated (e.g., penetrated to a particular extent) a medical unit (e.g., a doctor or medical chopper) may be autonomously, and immediately, provided with the soldiers location (e.g., via a GPS device on the soldier) and status (e.g., right lung may be punctured by small-arms fire).
Abstract:
Control system for a remote vehicle comprises a twin grip hand-held controller including: a left grip shaped to be held between a left little finger, ring finger, and the ball of the thumb, leaving the left index finger, middle finger, and thumb free; a left control zone adjacent to the left grip, including a first analog joystick and a first 4-way directional control manipulable by the left thumb, and a left rocker control located on a shoulder portion of the controller; a right handed grip shaped to be held between the right little finger, ring finger, and the ball of the thumb, leaving the left index finger, middle finger, and thumb free; and a right control zone adjacent the right grip, including a second analog joystick and a second 4-way directional control manipulable by the right thumb, and a right rocker control located on a shoulder portion of the controller.
Abstract:
The illustrative embodiments provide a method and apparatus for controlling movement of a vehicle. Movement of an operator located at a side of the vehicle is identified with a plurality of sensors located in the vehicle and the vehicle is moved in a path that maintains the operator at the side of the vehicle while the operator is moving.
Abstract:
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.