Abstract:
Watermark detection in an image or the like can be optimized by exploiting the innate biases in the image to emphasize the watermark signal. The watermark signal can be trial-located with different origins in the image to find one that yields improved results. Similarly, the image can be processed (e.g., by changing resolution, rotation, or compression) so as to change the innate biases to better reinforce the watermark signal. Compression of an image can be done in accordance with a desired identifier, with the compressor deciding which image components to retain and which to discard based, in part, on the identifier that is to be associated with the image. The techniques are also applicable to other forms of content, such as audio. A variety of other arrangements are also detailed.
Abstract:
The present invention relates generally to digital watermarking and steganographic data hiding. In one embodiment a method of rendering content to a user is provided. The rendered content includes a digital watermark embedded therein. In another embodiment, digital watermarking is utilized to facilitate purchase or lease of audio or video content over a network or with a remote computer. In still another embodiment, a compression characteristic is determined, and subsequent steganographic embedding is influenced based on the characteristic. Other embodiments are provided as well.
Abstract:
The presently claimed invention relates generally to digital watermarking, and processing video or audio media files. One claim recites a method including: analyzing a plurality of video or audio media files; determining whether there are duplicate media files in the plurality video or audio media files; and avoiding duplicate video or audio media files when searching the plurality of video or audio media files for digital watermarking. Of course, other claims and combinations are provided as well.
Abstract:
A watermarking system embeds a watermark into data values that may be streamed. A data hash is calculated using data values and a hash key. The data values are grouped. The groups include a first group and a second group. A first group hash is calculated using data values in the first group and a first group hash key. A second group hash is calculated using data values in the second group and a second group hash key. A watermark is constructed based on the first group hash and the second group hash. The value of at least one of the data values in the first group is modified using the watermark.
Abstract:
Methods and apparatus for enhancing the robustness of watermark extraction from digital host content are provided. Embedded watermarks may be extracted from received digital host content in accordance with a stego key. A first watermark is extracted and a number of errors in the first extracted watermark is assessed. If the number of errors is above a first pre-determined value, at least a second watermark is extracted from the host content. A number of errors in at least the second extracted watermark is assessed. If the number of errors in at least the second extracted watermark is above a second pre-determined value, the extraction results for the extracted watermarks are combined in order to cumulatively assess the validity of the first extracted watermark and at least the second extracted watermark.
Abstract:
A watermarked signal is pre-filtered based on an analysis of signal characteristics that identify filter parameters that yield better correspondence between the filtered watermarked signal and the digital watermark. The watermark detection method computes signal characteristics of a host digitally watermarked signal, and analyzes the characteristics to determine an extent to which the signal characteristics correspond to characteristics of the digital watermark. The method adapts parameters of digital watermark prediction applied to the watermarked signal based on the extent to which the signal characteristics correspond to the characteristics of the digital watermark. In one embodiment, different filters or filter parameters are selected to match different signal characteristics of the watermarked signal with the characteristics of the digital watermark.
Abstract:
An embedding-availability determining unit determines an availability of embedding data into an image based on an input/output characteristic of a predetermined feature amount related to a combination of an output device that outputs an image in which the data is embedded to a medium and an input device that inputs the image that is output to the medium. A result output unit outputs a result of determination by the embedding-availability determining unit.
Abstract:
The presently claimed invention relates generally to extracting or computing identifying information from media content, e.g., such as video and audio. One claim recites a method including: obtaining data representing video or audio associated with an online network resource; obtaining instructions from the online network resource, the instructions are associated with the data; processing the data in accordance with at least some of the instructions; utilizing one or more processors, computing identifying information from the data, the identifying information facilitating identification of the video or audio. Of course, other claims and combinations are provided as well.
Abstract:
An image processing apparatus embeds information into image data without an overhead. The image processing apparatus includes a selection unit for selecting some of the pixels forming the image data. A changing unit embeds the information into the pixels selected by the selection unit by swapping the bits of the values of the selected pixels according to the information.
Abstract:
A method of detecting an embedded signal in a media signal. The method comprises receiving blocks of the media signal and computing a detection metric for the blocks. The detection metric comprises a measure of coincidence of detection parameters of different blocks. The method performs subsequent detection operations based on the measure of coincidence of the detection parameters.