Abstract:
The present invention provides gas layer formation material selected from the group consisting of acenaphthylene homopolymers; acenaphthylene copolymers; poly(arylene ether); polyamide; B-staged multifunctional acrylate/methacrylate; crosslinked styrene divinyl benzene polymers; and copolymers of styrene and divinyl benzene with maleimide or bis-maleimides. The formed gas layers are used in microchips and multichip modules.
Abstract:
A chip structure comprises a substrate, a first built-up layer, a passivation layer and a second built-up layer. The substrate includes many electric devices placed on a surface of the substrate. The first built-up layer is located on the substrate. The first built-up layer is provided with a first dielectric body and a first interconnection scheme, wherein the first interconnection scheme interlaces inside the first dielectric body and is electrically connected to the electric devices. The first interconnection scheme is constructed from first metal layers and plugs, wherein the neighboring first metal layers are electrically connected through the plugs. The passivation layer is disposed on the first built-up layer and is provided with openings exposing the first interconnection scheme. The second built-up layer is formed on the passivation layer. The second built-up layer is provided with a second dielectric body and a second interconnection scheme, wherein the second interconnection scheme interlaces inside the second dielectric body and is electrically connected to the first interconnection scheme. The second interconnection scheme is constructed from at least one second metal layer and at least one via metal filler, wherein the second metal layer is electrically connected to the via metal filler. The thickness, width, and cross-sectional area of the traces of the second metal layer are respectively larger than those of the first metal layers.
Abstract:
A recess is formed in an insulating film, and then a conductive film is deposited over the insulating film so as to fill the recess. Thereafter, the conductive film is subjected to a first heat treatment. Subsequently, part of the conductive film located outside the recess is removed, and then the remaining part of the conductive film is subjected to a second heat treatment with the surface thereof exposed.
Abstract:
Within a method for forming a dielectric layer, there is first provided a substrate. There is then formed over the substrate a dielectric layer, wherein the dielectric layer is formed from a dielectric material comprising silicon, carbon and nitrogen. Preferably, a nitrogen content is graded within a thickness of the dielectric layer to provide an upper lying nitrogen rich contiguous surface layer of the dielectric layer and a lower lying nitrogen poor contiguous layer of the dielectric layer. The method contemplates a microelectronic fabrication having formed therein a dielectric layer formed in accord with the method. The method provides the resulting dielectric layer with a lower dielectric constant and enhanced adhesion properties as a substrate layer.
Abstract:
An interlayer insulating film and a first via connected to a diffusion layer in a MOS transistor are formed on the diffusion layer. Then, a low dielectric constant film for a first layer copper interconnection, and the first layer copper interconnection connected to the first via are formed. Then, an etching stopper film, an interlayer insulating film, and a low dielectric constant film for a second layer copper interconnection are formed in this order. Then, a via hole is formed in the etching stopper film and the interlayer insulating film, and a groove is formed in the low dielectric constant film for the second layer copper interconnection. A barrier metal layer is then formed. Thereafter, Ar ions are implanted. At the time, the implantation energy is 50 keV, and the dose is 1×1017 cm−2. A second via and the second layer copper interconnection are formed, and annealing is performed at a temperature of 400° C.
Abstract:
A plasma enhanced chemical vapor deposition (PECVD) process is provided for depositing one or more dielectric material layers on a substrate for use in interconnect structures of integrated circuits. The method comprises the steps of depositing a fluorinated amorphous carbon (a-F:C) layer on a substrate by providing a fluorine containing gas, preferably octafluorocyclobutane, and a carbon containing gas, preferably methane, in ratio of approximately 5.6, so as to deposit a a-F:C layer having an internal compressive stress of approximately 28 MPa. After deposition the film is annealed at approximately 400° C. for approximately two hours. An adhesion promoter layer of relatively hydrogen-free hydrogeneated silicon carbide is then deposited on the a-F:C layer using silane (SiH4) and methane (CH4) as the deposition gases. The silicon carbide layer may be deposited at a rate of approximately 180 Å per minute and typically results in deposition of a silicon carbide layer having an internal compressive stress of approximately 400 MPa. The deposited silicon carbide layer has relatively few hydrogen bonds thereby yielding a compact structure which promotes adhesion of the a-F:C layer to a silicon nitride layer and to the a-F:C layer, and which reduces diffusion of fluorine through the silicon carbide layer. A silicon nitride layer is then deposited on the adhesion promoter layer, the deposition materials preferably comprising silane (SiH4) and nitrogen (N2) in a ratio of 30:100 at 400° C. The silicon nitride layer has relatively few hydrogen bonds thereby resulting in a layer having an internal compressive stress of approximately 240 MPa. This stacked layer structure has thermal stability and resists peeling and cracking up to 450° C., and the a-F:C dielectric layer has a dielectric constant (k) as low, or lower, than 2.5.
Abstract:
A method of processing a semiconductor substrate involves etching a SiOF layer with HF or HFnullH2O. The method can be used to form hollow structures in semiconductor substrates and thus provides a way to make interlayer insulators.
Abstract:
In one aspect of the invention, a method for forming interconnects on a substrate is provided. A metal passivation layer is selectively formed on conductive elements of the substrate. Thereafter, one or more dielectric layers are deposited over the metal passivation layer. Interconnect lines and vias are then patterned and etched into the one or more dielectric layers. A conductive layer is subsequently deposited over the interconnect lines and vias. In another aspect of the invention, the selective deposition process may comprise electroless deposition of the metal passivation layer. Alternatively, the selective deposition process may comprise a selective chemical vapor deposition process. The metal passivation layer may also be formed by depositing a metal alloy of copper over the conductive element, depositing a copper layer over the metal alloy, and annealing the metal alloy. In another aspect still, a metal passivation layer is selectively deposited over the conductive element of the substrate. A first dielectric layer is then deposited over the metal passivation layer and the substrate. This is followed by depositing a second dielectric layer over the first dielectric layer. Preferably, the first dielectric layer has a dielectric constant higher than a second dielectric constant of the second dielectric layer. It is also preferred that the first and second dielectric layers have dissimilar etch characteristics. Interconnect lines and vias are then etched in the first and second dielectric layers using selective etch chemistry. The interconnect lines and vias are then filled with at least one conductive material.
Abstract:
Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
Abstract:
A semiconductor device with dual damascene structure is provided, which suppresses propagation delay of signals without using complicated processes. The device comprises a semiconductor substrate having a lower wiring layer and electronic elements, a first dielectric layer on the substrate, a second dielectric layer on the first dielectric layer made of carbon-containing SiO2, a third dielectric layer on the second dielectric layer, a fourth dielectric layer on the third dielectric layer made of carbon containing SiO2, the first and second dielectric layers having a via hole, the third dielectric layer having a recess overlapping the via hole, the recess formed to communicate with the via hole, a metal plug formed in the via hole in contact with the lower wiring layer or the electronic elements in the substrate, a metal wiring layer formed in the recess, and a fourth dielectric layer to cover the metal wiring layer.