Abstract:
A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.
Abstract:
A wind turbine is provided. The wind turbine includes at least one generator adapted to generate electric power and a plurality of electrical converter units adapted to convert electric power generated by the generator and electrically connectable or connected to the generator and to a utility grid. The generator includes a stator being segmented in stator segments. Each stator segment includes a plurality of stator windings. The stator windings of the respective stator segments are divided into at least a first and a second group of stator windings with each group including at least one stator winding. Several or all first groups of stator windings are electrically connected to a first electrical converter unit and several or all second groups of stator windings are electrically connected to a second electrical converter unit.
Abstract:
A drive unit for a door includes an electronically commutated multipole motor having: a stator part configured to be arrangable at a stationary structural component part; and a rotor part configured to be gearlessly connectable to a rotationally drivable element. The stator part and the rotor part include sheet metal elements stacked in a package-like manner. The sheet metal elements of the stator part and the sheet metal elements of the rotor part extend parallel to one another.
Abstract:
An electric machine includes a primary section, a secondary section interacting with the primary section via an air gap during operation of the electric machine, and a first base element fastened to the secondary section. The base element includes a first pole shoe having a first end and a second end, with the second end of the first pole shoe facing the air gap, a second pole shoe having a first end and a second end, with the second end of the second pole shoe facing the air gap, and a permanent magnet disposed between the first pole shoe and the second pole shoe. The permanent magnet has a magnetization from the first pole shoe to the second pole shoe, and is formed by a matrix with a magnetically active material embedded therein.
Abstract:
An in-wheel motor includes: a motor rotor installed inside a wheel of a vehicle; and a plurality of motor stators installed on the circumference of the motor rotor so as to be separated from each other, and forming magnetic fields to rotate the motor rotor.
Abstract:
An annular hood, with a stator assembly mounted and fixed therein, is fixed on the support bar. The stator assembly comprises an annular stator mounting plate which is fixed with an inner stator ring and an outer stator ring distributed concentrically. An annular track is formed between the inner stator ring and the outer stator ring. A rotor assembly and the stator assembly are coaxially and pivotally connected on the support bar, and the rotor assembly is formed of a rotor holder and multiple rotors distributed uniformly on the periphery of the rotor holder at interval. The rotor holder is formed of an outer ring and an inner ring, multiple blade fixing members of a spoke structure are arranged between the outer ring and the inner ring of the holder, and blades are fixed on the blade fixing members. The rotors are protruded and fixed on the outer ring of the holder axially, and a steel magnet of the rotors is located in the annular track between the inner stator ring and the outer stator ring.
Abstract:
A bearing adjusts an angle of attack of a rotor blade of a wind turbine according and includes first and second bearing rings that are rotatable relative to each other. The first bearing ring includes, as a slider or translator of a linear motor, a plurality of magnetic field sources disposed adjacently around at least a part of its circumference. The magnetic field sources are disposed such that each two adjacently disposed magnetic field sources generate a magnetic field with alternating polarity. The second bearing ring includes, as a stator of the linear motor, a group of at least two coils disposed adjacently around at least part of its circumference. A wind turbine includes a rotor coupled to at least one rotor blade via such a bearing, which enables the angle of attack of the rotor blade to be adjusted during operation.
Abstract:
Featured is a starter/generator to start a reciprocating engine or generate electrical energy using the engine. The starter/generator includes a plurality of magnetic elements that establish a magnetic flux, each magnetic element being attached to a surface of the crankshaft so the element moves in a prescribed path as the crankshaft rotates; a plurality of stator elements being arranged within the engine so as to be maintained in fixed relation to a corresponding magnetic element as it moves in the prescribed path, and control circuitry being configured and arranged to control the functionality of each stator element. In one mode a stator element is controlled so that movement of the magnetic element by the stator element cause electrical energy to be generated in the respective stator element and so in another mode each stator element/magnetic element combination operates the motor/generator as a motor.
Abstract:
A wheel driven mechanism adapted for driving a vehicle without motor is disclosed to include a rotor defining therein an accommodation chamber, a plurality of permanent magnets arranged in the accommodation chamber of the rotor, a stator having one or a number of stator segments, and one or a number of electromagnets located on the stator segment(s) within the accommodation chamber and facing toward the permanent magnets at the stator to enhance the convenience of use of the wheel driven mechanism.
Abstract:
In a water wheel with an integrated electrical generator, a ring element for forming a rotor is rigidly concentrically connected with the water wheel. The ring element is assembled of modular individual segments with inserted permanent magnets. At least one corresponding partial ring as a stator is allocated to the rotor, whereby each partial ring carries electrical coils in correlation to the permanent magnets of the ring element of the rotor. The partial rings of the stator are stationarily mounted by holding elements on support struts of the water wheel.