Abstract:
Preprinted forms are used in a general purpose printing device to allow for the subsequent verification of the authenticity of a printed document such as a ticket for transportation services. In operation, the user accesses the seller of the goods/services and during an information exchange with the seller the user inputs at least a portion of the preprinted data from the form. The seller then uses this information to formulate a printable control indicia which is then printed on the form at the user's location. When the form is subsequently presented to the seller, for example when the user attempts to board an aircraft using the form he/she printed, the preprinted portion of the form is used to obtain a decipher key which in turn is used to decipher the control indicia. Inability to decode the control indicia indicates that the printed material on the form may not be authentic.
Abstract:
The invention relates to identification documents, and in particular to pre-printing processing covert images, such as UV or IR images, provided on such identification documents. In one implementation, the invention provides a method of processing a digital image that is to be printed on a surface of an identification document as a fluorescing-capable image to improve the quality of the image. Edges or boundaries are detected within the image, the detected edges or boundaries forming an intermediate image. The edges or boundaries within the image are emphasized, and the emphasized image is used for printing the covert image. In some implementations of the invention, a digital watermark is embedded in the covert image.
Abstract:
For the purpose of designing watermark to be robust against image modification such as geometric modification (rotating, cutting, enlarging/shrinking, etc.), compression, and blurring, the watermark is embedded in frequency domain after formed as 2 dimensional shape, for example radial or concentric shape. In detecting watermark, it is possible to effectively detect the watermark, by using relation to a generated watermark in case where the peak is detected.
Abstract:
Digital watermarking technology is used in an image management system. Images are identified by digital watermarks. The images are stored so as to be indexed according to their unique identifiers. In the preferred embodiment, related images are grouped into a set of images through a common watermark identifier. A particular image within the set of images is identified through a hash of the particular image.
Abstract:
An object is that even if a transmitting end delivers data without adding signature data thereto, a receiving end can verify the originality of the data. The transmitting end registers the signature data of the data on an external data managing device on a network together with identification information for uniquely identifying the data. The receiving end requests and acquires the signature data of the data together with the identification information extracted from the data, from the external data managing device on the network. The receiving end can check the originality of the data using the signature data acquired from the external data managing device on the network.
Abstract:
A system and method are provided for authenticating data transmission between a network-connected digital scanner and a terminal. The method comprises: scanning a document at a digital scanner; signing the scanned document with a private key of a first asymmetric key-pair to create a first signature; transmitting the scanned document and first signature to a network-connected terminal; and, at the terminal, using a public key of the first key-pair to authenticate the transmitted document. Typically, signing the scanned document with a private key of a first asymmetric key-pair to create a first signature includes: creating a one-way hash function of the scanned document; and, encrypting the one-way hash function with the private key. Then, using a public key of the first key-pair to authenticate the transmitted scanned document includes: creating a one-way hash function of the transmitted document; decrypting the transmitted first signature with the public key; and, comparing the one-way hash function of the transmitted document to the decrypted signature. Some aspects of the method include the further steps of: at the digital scanner, establishing a user identity test, for example a PIN number, associated with the terminal; and submitting proof of user identity when a document is to be transmitted. Then, the scanned document and signature are transmitted in response to passing the user identity test, for example inputting the PIN number.
Abstract:
If it is verified that image data generated by an imaging device has not been modified, a first verification device generates watermarked image data by embedding watermark for detecting a modified portion in the image data. The first verification device further generates second verification data (digital signature) of the watermarked image data. A second verification device verifies whether or not the image data has been modified, e.g., using the second verification data. If the image data has been modified, the second verification device detects what portion of the image data has been modified.
Abstract:
A secure storage device with the identical external dimensions, form factor and hardware connectivity configuration of a standard removable storage device, for securing digital data such as digital images from digital cameras at the acquisition stage. Original digital camera data is saved in the memory of the secure storage device after performing one or more security functions, including encryption, creation of an authentication file, adding data to the image data such as fingerprinting, and adding secure annotations such as separate data included in an image header. These processes are transparent to a host device receiving secure data from the storage device because standard protocol is used to write to the secure storage device. The device prepares original authentication data from original digital camera data, and encrypts and stores both the original authentication data and the original image data. The use of the device includes reading the original image data on a separate computer, by means of direct downloading of the data and or mounting the removable storage device on the computer. The computer is able to read data on the raw transfer level as if the device is a standard unsecured storage device. On the content level, the data remains secure. The computer can be programmed with software whereby the encrypted original authentication data can be decrypted by a user having a password key. Additional software may enable the computer to verify the authentication data of the image data for questionable authenticity. The secure storage device secures data from any computerized device that stores data on a removable storage device, such as a portable computer.
Abstract:
Digital cameras and methods for using digital cameras incorporate or append authentication stamps in digital images. Each authentication stamp contains information that is useful in authenticating the source of a digital image, and thus an authentication process can use the authentication stamp to determine whether the digital image is authentic or was modified outside the camera.
Abstract:
This invention provides a method for identifying a purchaser who purchased content from which an illegal copy was produced. A provider system encrypts purchased by the purchaser using a public key of a purchaser system and sends the encrypted content to the purchaser system. The purchaser system creates a digital signature of the content with the use of a private key of its own and embeds the created digital signature into the received content. When an illegal copy is found, the provider system verifies the digital signature, embedded in the illegal copy as a digital watermark, to identify the purchaser who purchased the content from which the illegal copy was produced.