Abstract:
An optimized moving-coil loudspeaker is described herein. The loudspeaker includes an acoustic-radiating diaphragm that is non-cylindrical shape. The diaphragm is a substantially-planar substrate having uniform density. A moving-coil assembly is coupled to the acoustic-radiating diaphragm. The assembly is configured to move back and forth in a linear fashion. As the assembly is connected to the diaphragm it causes acoustic waves to be emitted from a front surface the acoustic-radiating diaphragm. The acoustic-radiating diaphragm is not supported by a conventional basket, among other differences.
Abstract:
Provided are an apparatus and a method for reproducing a surround wave field using wave field synthesis. The apparatus includes an audio signal analyzer for analyzing a received multi-channel audio signal to check the number of audio signal channels, and extracting a sound source signal for each checked channel from the multi-channel audio signal; a wave field synthesis renderer for localizing the extracted sound source signal for each channel at a virtual sound image outside a narrow space using wave field synthesis so that the extracted sound source signal is suitable for the number of the checked audio signal channels; and an audio reproducer for reproducing the localized virtual sound source signal.
Abstract:
Microphones arranged in an array shape along a longitudinal direction are respectively formed in both the longitudinal side surfaces of a housing 2 with substantially an elongated rectangular parallelepiped shape, and speakers arranged in an array shape along the longitudinal direction are formed in a lower surface. The speaker array forms sound emission beams based on sound emission directivity set according to a conference environment. On the other hand, when the microphone array forms sound collection beams by sound collection signals collected, a talker direction is detected from these beams and an output sound signal corresponding to this direction is formed and also is reflected on setting of the sound emission directivity. Also, when there are plural input sound signals, the sound emission directivity is set according to a use situation of the plural input sound signals.
Abstract:
Method of noise reduction in a hearing aid or a listening device to be used by a hearing impaired person in which the noise reduction is provided primarily in the frequency range wherein the hearing impaired has the smallest hearing loss or the best hearing.
Abstract:
A directional microphone system is disclosed, which comprises circuitry for low pass filtering a first order signal, and circuitry for high pass filtering a second order signal. The system further comprises circuitry for summing the low pass filtered first order signal and the high pass filtered second order signal. A method of determining whether a plurality of microphones have sufficiently matched frequency response characteristics to be used in a multi-order directional microphone array is also disclosed. For a microphone array having at least three microphones, wherein one of the microphones is disposed between the other of the microphones, a method of determining the arrangement of the microphones in the array is also disclosed.
Abstract:
A microphone unit is provided to minimize the attenuation levels of received sound information, which differs depending upon the distance between the positions of microphones and a sound source. A sound source direction identification system is provided to identify the sound source direction. In addition, a moving head control system is provided, where the moving head control system includes a microphone system for receiving sound from a sound source, a sound source direction identification section for identifying the direction of the sound source by obtaining received sound information, a motor control section for generating an appropriate control command to a head moving motor, and a head moving motor for receiving the control command from the motor control section and moving or rotating a robot head in a direction according to the command.
Abstract:
Near-field sensing of wave signals, for example for application in headsets and earsets, is accomplished by placing two or more spaced-apart microphones along a line generally between the headset and the user's mouth. The signals produced at the output of the microphones will disagree in amplitude and time delay for the desired signal—the wearer's voice—but will disagree in a different manner for the ambient noises. Utilization of this difference enables recognizing, and subsequently ignoring, the noise portion of the signals and passing a clean voice signal. A first approach involves a complex vector difference equation applied in the frequency domain that creates a noise-reduced result. A second approach creates an attenuation value that is proportional to the complex vector difference, and applies this attenuation value to the original signal in order to effect a reduction of the noise. The two approaches can be applied separately or combined.
Abstract:
Method for processing an input signal in a hearing aid, with the input signal being broken down into a discrete signal for each source relative to an acoustic signal, with the discrete signals being assigned to a spatial position of the source and with the discrete signals being output, or output attenuated, relative to the spatial position.
Abstract:
An electronic device includes a housing, a uni-directional microphone, and a cover. The housing has a first acoustic opening and a second acoustic opening. The uni-directional microphone is disposed in the housing to receive external sound via the first acoustic opening and the second acoustic opening. The cover is disposed in the housing to cover the first acoustic opening, the second acoustic opening, and the unidirectional microphone. A process for mounting a microphone includes providing a first acoustic opening and a second acoustic opening on a housing, fixing a uni-directional microphone in the housing beside the first acoustic opening, and covering the first acoustic opening, the second acoustic opening, and the uni-directional microphone with a cover.
Abstract:
An electronic device includes a housing, a plurality of microphones, and a plurality of guide tubes. The plurality of microphones are disposed in the housing. The plurality of guide tubes extend from the housing toward the plurality of microphones, whereby the plurality of microphones in the housing are capable of receiving external sound via the guide tubes.