Abstract:
A mirror is provided with a light source window and an illumination window each establishing communicative connection between an inner face side and an outer side of a hemispherical unit. The light source window is an opening to which a light source OBJ to be measured is attached mainly. The illumination window is an opening for guiding a flux of light from a correcting light source used for measurement of self-absorption toward the inner face of the hemispherical unit. A self-absorption correcting coefficient of the light source OBJ is calculated based on an illuminance by a correcting flux of light in a case where the light source to be measured OBJ in a non-light emitting state is attached to the light source window and an illuminance by a correcting flux of light in a case where a calibration mirror is attached to the light source window.
Abstract:
Provided are methods of using electromagnetic waves for detecting metal and/or dielectric objects. Methods include directing microwave and/or mm wave radiation in a predetermined direction using a transmission apparatus, including a transmission element; receiving radiation from an entity resulting from the transmitted radiation using a detection apparatus; and generating one or more detection signals in the frequency domain using the detection apparatus. Methods may include operating a controller, wherein operating the controller includes causing the transmitted radiation to be swept over a predetermined range of frequencies, performing a transform operation on the detection signal(s) to generate one or more transformed signals in the time domain, and determining, from one or more features of the transformed signal, one or more dimensions of a metallic or dielectric object upon which the transmitted radiation is incident.
Abstract:
A radiation source includes a chamber, a supply constructed and arranged to supply a substance to the chamber at a location that allows the substance to pass through an interaction point within the chamber, a laser constructed and arranged to provide a laser beam to the interaction point so that a radiation emitting plasma is produced when the laser beam interacts with the substance at the interaction point, and a conduit constructed and arranged to deliver a buffer gas into the chamber. The conduit has an outlet located adjacent to the interaction point.
Abstract:
The present invention relates to an apparatus for displaying an information carrier to passers-by in the vicinity, in particular a carrier on which advertising information is visible, comprising: —a stationary support; —an elongate post arranged on the support; —a carrier which is to be provided with the information to be displayed; —translating means for translating the information carrier reciprocally in longitudinal direction along the post; —rotating means for rotating the information carrier relative to the stationary support.
Abstract:
The invention relates to a particle therapy apparatus having an accelerator for generating a particle beam, a passive energy modulator comprising an absorber element, and a control entity. The control entity is designed to switch between an active adjustment of the energy in the accelerator and a passive energy modulation by the energy modulator, for the purpose of changing the energy of the particle beam from a high energy level to a low energy level in a step-by-step manner. In particular, this has the effect of shortening the dead times when changing between the energy levels.
Abstract:
The invention relates to a method for optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body in which the surface radiation which emanates from part of the surface during the physical and/or chemical process, is measured with the aid of a measuring device, in particular a sensor. In order to develop a method of this kind such that sintering processes can also be monitored in a firing furnace having thermal radiation equilibrium, the invention proposes to emit the radiation (14) having a radiation spectrum that differs from the surface radiation, to the surface (10) by means of a radiation source (15) and to measure the radiation with the aid of a measuring device (16).
Abstract:
A device couples energy from an electromagnetic wave to charged particles in a beam. The device includes a micro-resonant structure and a cathode for providing electrons along a path. The micro-resonant structure, on receiving the electromagnetic wave, generates a varying field in a space including a portion of the path. Electrons are deflected or angularly modulated to a second path.
Abstract:
A testing method of a wavelength-tunable laser having a resonator including wavelength selection portions having wavelength property different from each other includes a first step of controlling the wavelength-tunable laser so as to oscillate at a given wavelength according to an initial setting value, a second step of tuning the wavelength property of the wavelength selection portions and detecting discontinuity point of gain-condition-changing of the wavelength-tunable laser, and a third step of obtaining a stable operating point of the wavelength selection portion according to a limiting point of an oscillation condition at the given wavelength, the limiting point being a point when the discontinuity point is detected.
Abstract:
An light-emitting diode (LED) meter capable of analog presentations is disclosed. The LED meter includes an LED and a reflective object. The reflective object is capable of reflecting light emitted from the LED. The reflective object is also capable of being moved to and for along a path. The LED meter also includes means for selectively enabling the LED to emit light continuously for a duration that is proportional to a magnitude of measurement.
Abstract:
A method and apparatus for accurately retrieving the position of an optical feature. The method uses the optical properties of biaxial crystals to conically refract the optical feature and transform the image of the optical feature to a circular ring structure. The position of the optical feature is then calculated by locating a center point associated with the circular ring structure.