Abstract:
Two or more-staged masks are prepared for a charged beam generating source. One mask has first aperture sections having rectangular apertures arranged into a lattice form, and electrodes which deflects a beam at respective first aperture sections. The other mask has a second aperture section having basic figure apertures for shaping the beam which passes or passed through the first aperture sections. Layout data of a semiconductor apparatus are divided into sizes of the basic figures which take reduction in exposure into consideration so as to be classified according to the basic figures. The beam which is shaped into a form of an overlapped portion of the divided layouts and the classified basic figure is emitted onto a sample.
Abstract:
Due to its lack of appreciable thickness, the reticle used in charged-particle-beam (CPB) microlithography is prone to bending and flexing, causing instability in reticle axial height position relative to the projection-lens system, with consequent errors in image focus, rotation and magnification. Apparatus and methods are disclosed for monitoring changes in axial height position of the reticle, to facilitate making compensatory changes. Representative apparatus include a device for detecting the axial height position of the reticle. The device produces one or more beams of light (IR to visible) to strike the reticle at an oblique angle of incidence, detects light reflected from the reticle surface, and detects lateral shifts of the reflected light as received by a height detector. Hence, reticle focus is detected easily and in real time. Multiple detection beams can be used, thereby allowing detection of both axial height position and inclination of the reticle with high accuracy. Reticle-position data can be used to regulate one or more parameters of exposure and/or axial position of the reticle or wafer.
Abstract:
A laser imaging apparatus for forming an image on a surface of a substrate is provided with a laser source that emits a laser beam, a table mounting the substrate, the table being movable in a first direction within a predetermined plane, a scanning optical system which receives and deflects the laser beam emitted by the laser source to form a scanning beam spot on the substrate, the scanning beam spot scanning in a second direction that is perpendicular to the first direction, and a mechanism that moves the scanning optical system in the second direction.
Abstract:
A method and apparatus for correcting phase shift defects in a photomask is provided by scanning the photomask for the defect and determining locations of at least one defect. Following the determination of the location of a defect, the defect is three-dimensionally analyzed producing three-dimensional results. Utilizing the three-dimensional results, a focus ion beam (FIB) is directed onto the defect to eliminate the defect. The FIB is controlled by an etch map which is generated based on the three-dimensional results. To provide further precision to the repairing of the photomask, test patterns of the FIB are generated and three-dimensionally analyzed. The three-dimensional test pattern results are further utilized in generating the etch map to provide greater control to the FIB.
Abstract:
A window allows the introduction of radiation energy into an annular processing chamber filled with a material to be processed. The chamber is formed from coaxial cylinder members rapidly rotating relative to one another. The chamber can be thin enough so that it is short compared to the penetration depth of the radiation through the material, providing even exposure of the material to the radiation. Also, eddies created in the material by the relative rotation enhances the even exposure. When the material inside the annular processing chamber is opaque, resulting in an insignificant penetration depth, the eddies still insure that the material is evenly exposed to the irradiation.
Abstract:
An electron beam exposure apparatus for exposing a wafer includes: a multi-axis electron lens operable to converge a plurality of electron beams independently of each other; and a lens-intensity adjuster including a substrate provided to be substantially parallel to the multi-axis electron lens, and a lens-intensity adjusting unit operable to adjust the lens intensity of the multi-axis electron lens applied to the electron beams passing through the lens openings, respectively.
Abstract:
Charged-particle-beam (CPB) microlithography apparatus are disclosed that do not require installation in a magnetically shielded room, and that exhibit improved attenuation of the incursion of magnetic fields, originating in linear motors used to drive motions of the reticle and substrate stages, to the charged particle beam. The illumination-optical and projection-optical systems are enclosed in respective columns made of a thick ferromagnetic material. The reticle and substrate chambers are similarly constructed. Consequently, there is very low incursion of external magnetic fields to the beam in the columns. The reticle and substrate chambers include partition shields, each having a multi-layer construction with alternating layers of ferromagnetic material sandwiched with layers of non-magnetic material, attached via non-magnetic material to the respective chambers. The partition shields prevent magnetic fields from the respective linear motors from reaching the beam inside the columns.
Abstract:
The phase mask is provided for illuminating a photo-sensitive layer in a photolithography process for producing integrated circuits with a predetermined pattern of optically transmissive regions. The phase mask is configured, in zones in which the distances between neighboring regions in at least one geometrical direction are less than a predetermined limiting distance, in each case as an alternating phase mask. The zones with isolated contact windows are in each case configured as a halftone phase mask or a chromeless phase mask.
Abstract:
A method of exposing a wafer to a charged-particle beam by directing to the wafer the charged-particle beam deflected by a deflector includes the steps of arranging a plurality of first marks at different heights, focusing the charged-particle beam on each of the first marks by using a focus coil provided above the deflector, obtaining a focus distance for each of the first marks, obtaining deflection-efficiency-correction coefficients for each of the first marks, and using linear functions of the focus distance for approximating the deflection-efficiency-correction coefficients to obtain the deflection-efficiency-correction coefficients for an arbitrary value of the focus distance. A device for carrying out the method is also set forth.
Abstract:
A voice coil motor used in a positioning means associated with either a first object table or a second object table in which the coil is cooled with a cooling jacket in thermal contact with the coil, the cooling jacket comprising at least one channel for circulation of a cooling fluid, the or each channel being arranged such as to be substantially located in a portion of the cooling jacket adjacent to the coil., for use in a lithographic projection apparatus comprising: a radiation system for supplying a projection beam of radiation; a first object table for holding a mask; a second object table for holding a substrate; a projection system for imaging irradiated portions of the mask onto target portions of the substrate. The cooling jacket may be formed of a ceramic material and preferably is of a monolithic construction.