Abstract:
An optical system made up of lens arrays and normal lenses is particularly suitable for use as a massive parallel reader (approximately 102 channels) for microtiter plates and the like in absorption, fluorescence and luminescence.
Abstract:
A method and an apparatus for phase correction of position and detection signals in scanning microscopy. The method includes generation of a position signal from the position of a beam deflection device (7) and generation, from the light (17) proceeding from the specimen (15), of a detection signal pertinent to the position signal. The position signal and detection signal are then transferred to a processing unit (23). In the processing unit (23), a correction value is determined. The correction value is transferred to a computer (34) to compensate for time differences between the position signal and detection signal.
Abstract:
An improved confocal microscope utilizes an array of light sources imaged onto an object, and an array of small detectors to detect the light from each source. Cross talk between the beams of light is prevented by temporally modulating the sources at different frequencies. Light from one source is temporally modulated at a first frequency, for example in the megahertz region. A reference signal at the same frequency plus an offset frequency is also sent to the detector assigned to that source. The detected signal and the reference signal are then beat together, and heterodyne detection is used to detect only the light from the assigned source, which will beat with the reference signal and produce a signal at the offset frequency. Light from other sources beat with the reference signal to produce different frequency beat signals, which are filtered out using bandpass filters.
Abstract:
A method for determining a scan line error for a scan line, wherein the scan line is produced from one of a plurality of facets of a rotating reflector of a scanning device. The method comprises the steps of (a) determining a difference between a time of an occurrence of a point in a scan line produced from a first facet and a time of an occurrence of a point in a scan line produced from a second facet, and (b) determining from the difference, a scan line error for the scan line produced from the first facet.
Abstract:
The present invention provides an apparatus for optoelectronically determining power for a moving machine element. The apparatus includes two parallel coding discs which are mounted on the machine element and each have grid lines or light windows distributed over their circumference. A light source is arranged on one side of the coding discs and has an associated light meter on the opposite side of the discs. The light source and the light meter are preferably of an annular design in order to transilluminate all the light windows to a largely uniform degree. A diffusion disc is arranged in the beam path between the light source and the coding discs and a light barrier is mounted outside the region of the light windows. At least one of the light windows on one of the coding discs is formed in the beam path of the light barrier and a translucent endless zone is formed on the other of the parallel coding discs.
Abstract:
An apparatus and method for imaging and scanning masks for semiconductor production includes placing a scanning instrument having a probe at a position to scan a layer side of a mask with the probe, placing an optical microscope on a side of the mask opposite the layer side at a position to image a detail of the mask from the side of the mask opposite the layer side, positioning the scanning instrument and the optical microscope relative to each other such that the optical microscope images the probe and the mask simultaneously, and laterally displacing the mask between and relative to the scanning instrument and the optical microscope to permit selection of an imaged detail of the mask while a relative position between the scanning instrument and the optical microscope is maintained. A selected detail of the mask is imaged and/or scanned.
Abstract:
The invention relates to a method and a device for reading out radiation image information stored on an image medium (12). A scanning unit (10) has a laser (16) for scanning the image medium (12) with a readout light beam (22). The read/processing device (14) functions with two channels so that the luminescent light emitted by the image medium (12) during scanning and also the reflected read-out light are synchronously detected, evaluated and correlated. The digital luminescent light image values are corrected according to the digital reflection light values in order to better obtain the radiation image information.
Abstract:
An optical add/drop multiplexer to be tuned locally or remotely, to compensate for drift in operation, and to facilitate installation or replacement at remote terminals.
Abstract:
An image sensor package includes an image sensor, a window, and a molding, where the molding includes a lens holder extension portion extending upwards from the window. The lens holder extension portion includes a female threaded aperture extending from the window such that the window is exposed through the aperture. A lens is supported in a threaded lens support. The threaded lens support is threaded into the aperture of the lens holder extension portion. The lens is readily adjusted relative to the image sensor by rotating the lens support.
Abstract:
A nano-pattern lithographic fabrication apparatus for fabricating a fine pattern using a pulled micro-pipette is disclosed. This apparatus includes a container for receiving a certain solution therein, a container controlling unit for controlling the movement of the container and an ejection of the solution filled in the container, a sample moving unit for supporting and moving the sample, a detector for detecting a distance between the container controlling unit and the sample moving unit, and a controlling unit for receiving a detection signal from the detector and controlling the movement of the container and the sample moving unit and a distance therebetween.