Abstract:
Display systems that use contactless connectors for transmitting data are provided. The contactless connectors are electromagnetic connectors that form an electromagnetic communications link. The electromagnetic communications link can be established within different locations of the same device, or between two different devices. The communications link can be established using at least two transceivers. The transceivers can be incorporated in different enclosures that are hinged together, or the transceivers can be incorporated within a hinge that enables two enclosures to move with respect to each other. A transceiver can be incorporated into a display device that can receive data from an active surface that has a transceiver. When the display device is placed on the active surface, the display device may serve as an access point to content contained within the active surface.
Abstract:
Contactless extremely high frequency connector assemblies, passive cable connector assemblies, and active cable connector assemblies are disclosed herein. In one embodiment, a contactless connector assembly can include several (EHF) contactless communication units operable to selectively transmit and receive EHF signals, and several signal directing structures coupled to the EHF CCUs. The signal directing structures can direct the EHF signals along a plurality of EHF signal pathways.
Abstract:
Conduit structures for guiding extremely high frequency (EHF) signals are disclosed herein. The conduit structures can include EHF containment channels that define EHF signal pathways through which EHF signal energy is directed. The conduit structures can minimize or eliminate crosstalk among adjacent paths within a device and across devices.
Abstract:
Display systems that use contactless connectors for transmitting data are provided. The contactless connectors are electromagnetic connectors that form an electromagnetic communications link. The electromagnetic communications link can be established within different locations of the same device, or between two different devices. The communications link can be established using at least two transceivers. The transceivers can be incorporated in different enclosures that are hinged together, or the transceivers can be incorporated within a hinge that enables two enclosures to move with respect to each other. A transceiver can be incorporated into a display device that can receive data from an active surface that has a transceiver. When the display device is placed on the active surface, the display device may serve as an access point to content contained within the active surface.
Abstract:
Circuit connectors for establishing EHF communication include a receiver configured to receive a transmitted EHF electromagnetic signal, and an output circuit coupled to the receiver. The output circuit has two states of operation that correspond to enabling a signal output and disabling the signal output. The output circuit is also configured to change its state of operation responsive to a state of a control signal, and a controller is coupled to the receiver and configured to produce the control signal. The control signal has two states that correspond to a first condition when the received signal exceeds a first threshold and a second condition when the received signal is less than a second threshold.
Abstract:
Dielectric coupler devices and dielectric coupling systems for communicating EHF electromagnetic signals, and their methods of use. The coupler devices include an electrically conductive body having a major surface, the electrically conductive body defining an elongate recess, and the elongate recess having a floor, where a dielectric body is disposed in the elongate recess and configured to conduct an EHF electromagnetic signal.
Abstract:
An extremely high frequency (EHF) protocol converter may include a transducer, an EHF communication circuit, a protocol conversion circuit, and a circuit port. The transducer may be configured to convert between an electromagnetic EHF data signal and an electrical EHF signal. The EHF communication circuit may be configured to convert between a baseband data signal and the electrical EHF signal. The protocol conversion circuit may be adapted to convert between the baseband data signal having data formatted according to a first data protocol associated with a first external device and a second baseband data signal having data formatted according to a second data protocol associated with a second external device. The second data protocol may be different from the first data protocol. The circuit port may conduct the second baseband data signal to the second external device.
Abstract:
Contactless extremely high frequency (EHF) signal directing and blocking structures are disclosed herein. The EHF signal directing structures may focus EHF signal energy along a desired EHF signal pathway. The EHF signal blocking structures may minimize signal propagation through substrates such as circuit boards. Focusing EHF signal energy and selectively blocking the EHF signal energy can minimize or eliminate crosstalk and enhance data transmission speed and integrity.
Abstract:
Circuit connectors for establishing EHF communication include a receiver configured to receive a transmitted EHF electromagnetic signal, and an output circuit coupled to the receiver. The output circuit has two states of operation that correspond to enabling a signal output and disabling the signal output. The output circuit is also configured to change its state of operation responsive to a state of a control signal, and a controller is coupled to the receiver and configured to produce the control signal. The control signal has two states that correspond to a first condition when the received signal exceeds a first threshold and a second condition when the received signal is less than a second threshold.
Abstract:
An extremely high frequency (EHF) protocol converter may include a transducer, an EHF communication circuit, a protocol conversion circuit, and a circuit port. The transducer may be configured to convert between an electromagnetic EHF data signal and an electrical EHF signal. The EHF communication circuit may be configured to convert between a baseband data signal and the electrical EHF signal. The protocol conversion circuit may be adapted to convert between the baseband data signal having data formatted according to a first data protocol associated with a first external device and a second baseband data signal having data formatted according to a second data protocol associated with a second external device. The second data protocol may be different from the first data protocol. The circuit port may conduct the second baseband data signal to the second external device.