Abstract:
A method of transmitting signals by a transmitting side device having multiple antennas (hereinafter ‘N antennas’) is disclosed. In this method, the transmitting side device transmits reference signals (RSs) via M antenna among the N antennas, where M≦N, where one or more of M and a sequence of antenna numbers used for transmitting RSs informs a receiving side device of first information for data transmission, and where the RSs are used by the receiving side device for identifying second information for channel estimation. Transmitting side device transmits data to the receiving side device according to the first information.
Abstract:
A method for receiving a signal from a base station by a user equipment, using massive antenna array based beamforming of the base station in a wireless communication system is disclosed. The method includes receiving, from the base station, antenna shuffling information corresponding to a preferred antenna port set among a plurality of antenna ports included in the massive antenna array, measuring channel state information according to the antenna shuffling information and reporting the channel state information to the base station, and receiving, from the base station, a beamformed signal using the preferred antenna port set based on the channel state information, wherein the antenna shuffling information includes at least one of information about a start index of antenna ports included in the preferred antenna port set and information about a direction to which antenna port indexes are allocated.
Abstract:
A method for providing scalable service in a wireless communication system is disclosed. In this method, the transmitting side device transmits base layer signals and enhancement layer signals for one scalable service to a user equipment (UE) based on a HARQ (Hybrid Automatic Repeat Request) scheme. The base layer signals can be independently used at the UE without the enhancement layer signals. On the other hand, the enhancement layer signals cannot be used at the UE without the base layer signals. The transmitting side device also retransmits the base layer signals before a retransmission of the enhancement layer signals when there are both of the base layer signals and the enhancement layer signals to be retransmitted based on the HARQ scheme.
Abstract:
A method and apparatus for performing transmit (Tx) power control in a convergence network of a plurality of communication systems. A method for performing transmit power control (TPC) in a plurality of communication system convergence networks includes receiving, by a first entity of a first communication system, a TPC information request message requesting information associated with transmit power control (TPC) from a second entity of a second communication system; upon receiving a request of the TPC information request message, transmitting a first TPC information reporting message, which includes a maximum transmit (Tx) power value of the first entity and an interference signal value caused by a neighbor entity of the first entity, to the second entity; receiving a TPC command message, which includes information of the maximum Tx power value of the first entity adjusted based on the maximum Tx power value of the first entity and the interference signal value, from the second entity; and adjusting the maximum Tx power value of the first entity based on the information regarding the adjusted maximum Tx power of the first entity.
Abstract:
A method is described for a user equipment (UE) to report channel state information (CSI) including at least one of a rank indicator (RI), a precoding matrix indicator (PMI) or a channel quality indicator (CQI) in a wireless communication system. The UE reports the RI to an evolved Node B (eNB), drops a report of the PMI after reporting the RI to the eNB, and reports the CQI to the eNB after dropping the PMI report. A rank value corresponding to the RI is changed from a rank value corresponding to a most recently reported RI before reporting the RI to the eNB. The CQI is determined based on the RI and a precoding matrix that does not correspond to the dropped PMI report.
Abstract:
The present invention relates to a method for transceiving a signal in a wireless communication system. A method for transceiving a signal in a wireless communication system according to one embodiment of the present invention comprises the steps of: transmitting a downlink signal from a base station to a terminal; receiving an uplink signal transmitted from the terminal; and cancelling a self-interference signal on the basis of the transceived downlink signal or the uplink signal, wherein the transmission periods for the downlink signal and the uplink signal comprise dedicated transmission periods, and in the dedicated transmission period, signal transmission periods of the base station and the terminal are differentiated.
Abstract:
A method for transmitting signals at a User Equipment (UE) in a multi-antenna wireless communication system is discussed. The method includes receiving an uplink grant from a Base Station (BS); transmitting transport blocks and Reference Signals (RSs) for the transport blocks via a plurality of layers based on the uplink grant to the BS; receiving Negative ACKnowledgment (NACK) information for at least one transport block among the transport blocks from the BS; and retransmitting the at least one transport block and the RS for the at least one transport block via at least one layer to the BS.
Abstract:
Here, operation for 3D beam forming is disclosed. UE, receiving reference signals from one or more base stations (eNBs), may report feedback information comprising precoding matrix information to the one or more eNBs. The precoding matrix information indicates a first type precoding matrix for a horizontal direction and a second type precoding matrix for a vertical direction. eNBs may transmit signals, which are precoded based on a third type precoding matrix for beam forming both on the horizontal direction and the vertical direction.
Abstract:
A method and apparatus for performing effective feedback in a wireless communication system supporting multiple antennas. A method for transmitting CSI of downlink transmission via uplink in a wireless communication system includes transmitting a joint-coded rank indicator (RI) and a first wideband (WB) precoding matrix indicator (PMI) at a first subframe, and transmitting a wideband channel quality indicator (WB CQI) and a second WB PMI at a second subframe. A user equipment (UE) preferred precoding matrix is indicated by a combination of the first PMI and the second PMI. If the RI is Rank-1 or Rank-2, the first PMI indicates one of subsets each having 8 indexes from among 16 indexes of the first PMI of a precoding codebook.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for reporting channel state information. A method in which a terminal reports control state information (CSI) in a wireless communication system according to an embodiment of the present invention comprises: a step of determining rank indicator (RI) report timing for cases where a value of a precoding type indicator (PTI) is 0; a step of determining wideband first precoding matrix indicator (PMI) report timing; a step of determining wideband second precoding matrix indicator report timing and wideband channel quality indicator (CQI) report timing; and a step of reporting said CSI based on the result of the determination on the reporting timing. The CSI which is reported firstly after the RI report timing in cases where the value of the PTI is 0 can be set to become said wideband first PMI.