Abstract:
Methods and systems are provided for multi-chip receivers with loop-through feeds. A receiver that comprises plurality of chips may receive one or more input feeds, with each of the chips generating a corresponding output comprising data (e.g., channels) extracted from the one or more input feeds. Only a first chip may handle reception and/or initial processing of the one or more input feeds, with each one of the remaining chips processing a loop-through feed generated in the first chip, in order to generate the corresponding output of that chip. The loop-through feed may be generated based on the one or more input feeds. In this regard, the loop-through feed may comprise at least one of the one or more input feeds that is partially processed in the first one of the plurality of chips.
Abstract:
Systems and methods are provided for detection and compensation of dielectric resonator oscillator frequency drift. DRO frequency drift detection and compensation may be applied in a system (e.g., outdoor unit) during handling of received signals. The DRO frequency drift detection and compensation may comprise, for each input signal, obtaining DRO frequency drift related information, related to the input signal; determining, based on the obtained DRO frequency drift related information, one or more adjustments applicable to processing of the input signal and/or the generation of the output signal using the at least portion of the input signal; and applying the one or more adjustments. The DRO frequency drift detection and compensation may be applied continually, occasionally, and/or periodically.
Abstract:
Received data packets are groomed to improve performance of MPEG-2 transport stream packet in a digital video broadcasting system. Multitude of crosschecking techniques are applied to ensure that crucial pieces of information such as the packet identifier (PID) field, the continuity counter (CC) field, table ID, section length, IP header checksum, table and frame boundaries, application data table size are corrected if necessary.
Abstract:
A system and method in a broadband receiver (e.g., a satellite television receiver) for efficiently receiving and processing signals, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
Abstract:
Circuitry of a hybrid fiber-coaxial network may comprise a first transceiver configured to connect the circuitry to an optical link, a second transceiver configured to connect the circuitry to an electrical link, a first processing path, a second processing path, and a switching circuit. In a first configuration, the switching circuit may couple the first transceiver to the second transceiver via the first processing path. In a second configuration, the switching circuit may couple the first transceiver to the second transceiver via the second processing path. The first transceiver may comprise a passive optical network (PON) transceiver and the second transceiver may comprise a data over coaxial service interface specification (DOCSIS) physical layer transceiver. The switching circuit may be configured based on the type of headend to which the circuitry is connected.
Abstract:
A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path through it when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, a splitter, or the like. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold and/or in response to one or more control messages indicating whether any downstream cable modem is, or will be, transmitting.
Abstract:
Methods and systems are provided for guard band detection and/or frequency offset detection. For example, a signal processing circuit may be operable to determine, for each of a plurality of downconverted signals, one or more frequency offsets that are associated with one or more corresponding local oscillators (LOs) used in obtaining the plurality of downconverted signals; and relating to the determined frequency offsets may be generated for the plurality of downconverted signals. The signal processing circuit may perform, based on the generated information, one or both of a band stacking operation and a channel stacking operation so as to prevent channels/bands being stacked on each other or being overlapped.
Abstract:
A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.
Abstract:
Methods and systems are provided for band translation with protection. A signal processing circuitry (chip) may be configured to handle a plurality of signals, comprising at least a first signal corresponding to internal communication within an in-premises network and at least a second signal originating from a source external to the in-premises network; and to process on-chip the plurality of input signals, to generate one or more output signals. In this regard, at least one output signal may comprise components corresponding to the first signal and the second signal; and the processing may be configured to mitigate on-chip, during generating of the one or more outputs, at least one effect of including in the at least one output signal a first component corresponding to one of the first signal and the second signal on a second component corresponding to the other one of the first signal and the second signal.
Abstract:
Methods and systems are provided for adaptive management of local networks (e.g., in-premises networks, which may access or be connected to cable or satellite networks). A network device (e.g., a gateway device) may be configured to function as a network manager in a local network, to manage internal connections and/or communications within the local network. The managing may comprise assessing effects of the internal connections and/or communications on external connections and/or communications with one or more devices and/or networks external the local network; and setting and/or adjusting based on the assessed effects, one or more communication parameters associated with each one of the internal connections and/or communications. The effects of the internal connections and/or communications may result from utilizing one or more physical mediums that are shared with and/or are commonly used by the external connections and/or communications with one or more devices and/or networks external the local network.