Abstract:
Disclosed herein are devices for the magnetophoretic separation of target biological materials including a separation chamber that has a plurality of channels, and one or more wires carrying a current, the wires generating a magnetic force that deflects magnetically-labeled target biological materials into a buffer stream. In addition, methods of separating target biological materials from non-target biological materials in a sample are disclosed. Finally, methods for constructing a magnetophoretic separation device are disclosed.
Abstract:
A mechanism for capturing molecules is provided. A nanopore through a membrane separates a first chamber from a second chamber, and the nanopore, the first chamber, and the second chamber are filled with ionic buffer. A narrowed neck is at a middle area of the first chamber, and the narrowed neck is aligned to an entrance of the nanopore. The narrowed neck has a high intensity electric field compared to other areas of the first chamber having low intensity electric fields. The narrowed neck having the high intensity electric field concentrates the molecules at the middle area aligned to the entrance of the nanopore. Voltage applied between the first chamber and the second chamber drives the molecules, concentrated at the entrance of the nanopore, through the nanopore.
Abstract:
A detection method of detecting analytes of interest which are present in a liquid. The detection method including the steps of forming drops of liquid on a first surface by capillary breaking of a finger of liquid, which is initially formed by liquid dielectrophoresis. The thus formed drops each come into contact with a different detection surface, which is arranged facing the first surface. Analytes of interest which are present in each of the drops are detected at the corresponding detection surface.
Abstract:
A system and method for removing a target species from a fluid source is provided. The system includes a reciprocating fluid cleansing device, including a processing chamber with a port at a first end for fluid passage and a movable plunger at a second end, wherein the plunger in contact with a fluid includes a motorized mixing element for mixing the fluid with species-targeting magnetic particles. Motion of the plunger in a first direction transfers a first volume of the fluid from the fluid source into the processing chamber. Motion of the plunger in a second direction transfers the first volume of the fluid from the processing chamber to a fluid destination. At least one magnetic element provides a magnetic field gradient within the processing chamber. A connector connects the port of the first processing chamber to the fluid source and the fluid destination.
Abstract:
The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
Abstract:
The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
Abstract:
A gas chromatograph having a gas inlet port, a sealed fluid flow channel, a gas outlet port, a gas outlet port in fluid connection with a second end of the fluid flow channel, and a gas molecule detector in fluid connection with the gas outlet port, is disclosed. The first end of the sealed fluid flow channel is in fluid connection with the gas inlet port. The sealed fluid flow channel contains one or more pairs of electrodes running lengthwise along the inner surface of the fluid flow channel.
Abstract:
The present invention relates to an apparatus for separating fine particles using magnetophoresis, and to a method for separating fine particles using same, and particularly, to an apparatus for separating fine particles using magnetophoresis, which includes a fine, patterned magnetic structure capable of quickly and efficiently separating even particles that are weakly magnetized and coupled to fine particles, and to a method for separating fine particles using same.
Abstract:
The present invention provides a device and methods of use thereof in microscale cell sorting. This invention provides sorting cytometers, which trap individual cells within vessels following exposure to dielectrophoresis, allow for the assaying of trapped cells, such that a population is identified whose isolation is desired, and their isolation.
Abstract:
A stirring apparatus and a method of separating magnetic beads from a sample including the magnetic beads are provided. The stirring apparatus includes at least one rotational body having a hollow formed therein; a driving unit which moves upward and downward and rotates the at least one rotational body; a cap which is combined with the rotational body, extends in a vertical direction, and has an internal space connected to the hollow of the rotational body; and a magnetic force application unit which moves upward and downward to be inserted into or taken out of the internal space of the cap via the hollow of the rotational body.