Abstract:
A process for decontaminating a medium polluted with metals and hydrophobic organic compounds (HOC) includes providing an acidic slurry of water, acid, chloride salt, surfactant, and the polluted medium. Flotation is preformed on the acidic slurry to form a HOC-rich froth and an HOC-depleted slurry and the froth is recovered. The slurry is separated to obtain a treated solid and a liquid effluent rich in metallic ions. Preferably, the process also includes recuperating the metals by chemical precipitation and/or electrodeposition to produce a treated solution. Also provided are a decontaminant having an acid, a chloride salt, and a surfactant as well as a chemical kit for decontaminating the polluted medium including the decontaminant in which the acid, chloride salt and surfactant can be mixed with polluted medium in the presence of water before removing at least a portion of the metals and HOC from the polluted medium.
Abstract:
There is provided methods for separating a target material from a raw material by mixing the raw material with water to form a slurry, adding a collector compound to the slurry to modify a relative hydrophobicity of a surface of the target material, adding a facilitator compound to enhance the modification of the relative hydrophobicity of the surface, and forming a froth including a concentrate of the target material. Disclosed methods may also include adding a facilitator compound to a raw material slurry that has been treated with a collector compound and a reagent for neutralizing the collector compound.
Abstract:
The invention provides methods and compositions for improving a froth flotation type separation. The method uses a thickener to improve the effectiveness of an emulsifier. The improvement allows for low dosages of emulsifier to work well so the emulsifier does not cancel out the effectiveness of other additives in the slurry such as collectors, frothing agents, regulators, depressors, deactivators, and/or activators.
Abstract:
The invention provides a method of improving a flotation separation process. The method involves PAPEMP, a material previously thought to only be of use in controlling scale deposit on surfaces of equipment used in cyanide leaching. In the invention the PAPEMP is added to the flotation separation process for improved sulfide mineral separation. Not only does the addition of PAPEMP improve the overall recovery of sulfide complexed metals in flotation, but by doing so it also reduces the energy requirements and adds other efficiencies to other downstream ore processing and refining steps. This has the added benefit of helping to preserve the environment.
Abstract:
A method for the recovery of molybdenum from an ore that includes a molybdenum-bearing mineral, such as molybdenite. The ore is treated to recover metal values from the ore, such as base metals, by utilizing a depressant to depress the flotation of the molybdenite. The tailings, which can include insoluble silicate minerals in addition to the molybdenite, are then activated to render the molybdenite floatable in one or more subsequent flotation steps, thereby producing a high-grade molybdenum concentrate.
Abstract:
The present invention relates generally to a process and an apparatus for flotation of sulphide minerals, such as sulphide minerals hosted in ores rich in magnesium minerals. The process involves grinding of the nickel ore rich in magnesium minerals and thereafter separation of the ground material into a coarse and fine stream of particles coarser than about 30 microns and finer than about 30 microns, respectively. Optionally, the fines stream may be further separated into a slimes fraction. The coarse and fine flotation streams are then fit to separate parallel flotation circuits. Acid and/or activator is added during flotation of the coarse stream only. Signficantly improved recoveries and grades were obtained with reduced acid consumption.
Abstract:
A composition, adapted to be used in the flotation of ore fractions in aqueous suspension, with the advantages of better dispersability of the amine and improved flotation results. The composition consists essentially of: (a) water; (b) a long chain aliphatic amine; and (c) a frother. The composition may further contain a carboxylic or mineral acid emulsifier.
Abstract:
A targeted particulate, synthetic organic plastic material having normally hydrophobic surface characteristics is separated from a mixture of two or more of such plastic materials by conditioning the mixture of plastic materials in a flotation cell with a heteropolar surfactant which has a hydrophile-lipophile balance (HLB) value greater than 5 and which selectively depresses the targeted plastic material by making the surfaces thereof more hydrophilic without substantially affecting the surfaces of the other plastic material(s) and introducing gas bubbles into the resulting conditioned pulp such that the gas bubbles selectively adhere to the surfaces of the other plastic materials(s) and cause them to float. The targeted plastic material is recovered in the cell product and the other plastic material(s) is recovered in the float concentrate.
Abstract:
Arsenopyrite is separated from a mixture with pyrite by contacting the mixture with a sulfitic agent providing HSO.sub.3.sup.- ions at elevated temperature and pH below about 8 for a period sufficient to impart a selective depression property to the arsenopyrite. On addition of a collector the pyrite is rendered floatable, enabling froth flotation to achieve a concentrate rich in pyrite and tailings rich in arsenopyrite.
Abstract:
A process is described for the mineral separation of rare earth metal compounds, such as bastnaesite, contained in oxidic minerals. The process is a froth flotation process utilizing a novel collector emulsion, which is an emulsified mixture of:a secondary amine modified sulphonated fatty acid,a high rosin containing tall oil fatty acid,an anionic petroleum sulphonate, anda high molecular weight primary amine.The collector emulsion mixture is added to the aqueous slurry of the comminuted rare earth metal compound containing oxidic mineral, which has been previously conditioned in a conventional manner. The conditioning reagents may include alkaline pH modifiers and gangue depressants such as citric acid, oxalic acid, sodium silicates and fatty acids.The rare earth metal compounds will be concentrated in the froth, and are separated in the conventional manner.