Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
A hollow optical fiber 10 has an intermed ate dielectric layer 12 interposed between an inner periphery side dielectric layer 11 facing a hollow core portion 10a and a metal layer 13. The inner periphery side dielectric layer 11 is formed of calcium fluoride. The intermediate dielectric layer 12 is formed of yttrium fluoride. Metal of the metal layer 13 can be prevented from dispersing into the dielectric layers 12, 11 by the intermediate dielectric layer 12 formed of yttrium fluoride. The hollow optical fiber 10 is manufactured by vapor depositing calcium fluoride on an outer peripheral surface of an acid-soluble glass tube 20 (base material), then vapor depositing yttrium fluoride on its outer peripheral surface, then vapor depositing a metal layer formed of silver, gold or the like on its outer peripheral surface, and thereafter, dissolving the glass tube 20 with acid.
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
An upconversion fiber laser uses a pump source which may be another fiber laser, such as a high power, diode-laser-pumped, fiber laser. The upconversion fiber laser includes an optical fiber whose core region is doped with an active lasing ionic species capable when optically pumped of undergoing upconversion excitation, such as certain rare earth ionic species, and which is embedded in a cladding of the optical fiber. Use of a fiber pump laser can improve coupling of pump light into the optical fiber, thereby achieving higher pump intensities in the core region and improved upconversion efficiency. The upconversion fiber laser's resonant laser cavity is defined by feedback means which can include at least one reflective grating formed in the optical fiber, as well as a reflective end face of the optical fiber. Any portion of the optical fiber that lies outside of the resonant laser cavity, such as any portion beyond the integral reflective grating, may act as an optical power amplifier for the upconverted laser output. The disclosure includes other embodiments in which pump brightness can be further increased with multiple pump sources.
Abstract:
Method of manufacturing a multi-component glass cylindrical part comprising the operations of providing a vertical cylindrical cavity lined with porous membranes whose inside dimensions are very slightly larger than those of the glass cylindrical part and in which can slide a cylindrical pedestal, providing a seed mass of the glass on the pedestal, heating the seed mass until it melts, injecting a gas continuously into the porous membranes to form and maintain a layer of gas between the porous membranes and the molten seed mass preventing any contact between the molten seed mass and the porous membranes, feeding the molten seed mass from the top of the cavity by continuously dispensing a powder made up of the components of the glass, varying the composition of the powder as the cylindrical part is formed, so that the glass cylindrical part has a composition that varies in the longitudinal direction, and lowering the pedestal as the cylindrical part is formed.
Abstract:
A process for the vapor phase deposition of a fluoride containing glass on a substrate, the said fluoride containing glass containing in mole percent with a total of 100%, 30-50 PbF.sub.2, 30-50 GaF.sub.3, 0-30 ZnF.sub.2, 1-5 MF.sub.2 wherein M is Mn or Cd, 1-5 InF.sub.3, 0-10 AlF.sub.3 and 0-10 adjuvant, which involves contacting the substrate with vapors emanating from a molten bath of metallic fluorides comprising a reception bath containing in mole percent with a total of 100%, 9-26 YF.sub.3, 19-38 BaF.sub.2, 35-40 InF.sub.3, 18-25 M'Fe.sub.2 wherein M' is Mn, Cal or Zn and 0-10 adjuvant to which reception bath has been added a sufficient amount of a mixture of PbF.sub.2, GaF.sub.3 and optionally AlF.sub.3. The invention also concerns a vitreous composition deposited on a substrate, thus obtained, which is useful as a waveguide in the infrared.
Abstract:
In a method of manufacturing a cylindrical part from glass, especially but not exclusively fluorinated glass, a vertical cylindrical cavity is lined with a porous material and its inside dimensions are a few tens of microns greater than those of the part. A cylindrical pedestal constituting a support for the part slides in the cavity. An initial seed mass constituted from the glass is provided on the pedestal. The seed mass is heated until it melts and a gas is injected permanently into the porous material in order to maintain between them and the molten seed mass a layer of gas a few tens of microns thick to prevent any contact. The molten seed mass is fed continuously from the top of the cavity with the powder constituents of the glass and the pedestal is lowered as the cylindrical part is formed from the seed mass.
Abstract:
An optical fiber preform includes a core made from a fluoride glass which is doped with a rare earth, and a cladding surrounding the core. The cladding is made from one of an oxide glass and a fluoroxide glass. The core has a characteristic of amplification at 1.3 .mu.m-band. The cladding does not have absorption at 1.3 .mu.m-band. The preform is useful as a material for a fiber optical amplifier in optical communication systems.
Abstract:
Halide glass articles, e.g. rods, tubes and preforms for making fluoride glass fibres, are prepared by melting and/or casting the articles under a low pressure, e.g. 0.01 to 500 mbars and, during the low pressure regime, a gas flow rate of between 0.01 to 100 liters/min (measured at NTP) is maintained. It has been found that subjecting the melts to a low pressure reduces the attenuation of the fibre which eventually results from the melts.
Abstract:
A method for producing internally coated glass tube preforms for drawing er optic conductors. The internally coated glass tubes are halogen coated, preferably coated with metal fluorides, so that an optical fiber formed will have a halogen core which conveys light having a wavelength of about 2 to 4 microns, which is in the infrared region, with low attenuation. With one aspect of the method, a carrier gas and a halogenated alkoxide are introduced into a glass tube which has an inner wall and which is surrounded by a resonator for producing a plasma from the halogenated alkoxide in the tube. With another aspect of the method, a blend of a carrier gas, an organometallic compound, and a halogen-containing gas are introduced into a glass tube which has an inner wall and which is surrounded by a resonator for producing a plasma. In both cases, the tube is moved relative to the resonator to form a plasma zone within the tube such that a halide coating is formed on the inner wall of the tube. The plasma generation and inner glass wall coating take place at a relatively low pressure and at a relatively low temperature.