Abstract:
A system and method of controlling an automotive electric oil pump are provided. The method of controlling an oil pump can minimize power consumption of a vehicle and improve the fuel efficiency accordingly by learning the performance of the electric oil pump and operating the electric oil pump based on performance.
Abstract:
A sensor including a layer having viscoelastic properties, the layer comprising a void, the void filled with a fluid; and optionally, a more rigid sensing element embedded within the layer. When a force is applied to a surface of the sensor, the shape of the void changes, causing the electrical resistance of the fluid in the void to change. When included, the more rigid sensing element can bear upon the void to cause the electrical resistance of the fluid in the void to change. A direction and intensity of the force can be determined by measuring the change of the electrical resistance of different voids positioned about the sensing element. The layer can be an elastomer, preferably silicone rubber. The fluid can be a conductive liquid, preferably Eutectic Gallium Indium. The sensing element can be plastic and can have a “Joystick” shape. The voids can take the form of channels or microchannels having a predefined pattern and/or shape.
Abstract:
The present invention relates to a pressure sensor for measuring the pressures experienced by an anthropomorphic dummy in an abdominal or thoracic section of the trunk of said dummy. This sensor comprises at least two fluid-tight flexible pressure-measurement chambers (4) arranged in the abdominal or thoracic section of the trunk of said dummy on each side of a sagittal median plane of said abdominal or thoracic section, said pressure-measurement chambers (4) being filled with an incompressible fluid and each comprising at least one pressure-measurement cell (5) able at output thereof to deliver an electric signal indicative of the pressure of said fluid in said pressure-measurement chambers.
Abstract:
A first substrate that includes pressure sensors which are disposed in plural around a reference point; an approximately hemispherical elastic protrusion that is positioned so that the center of the elastic protrusion is approximately disposed in a position which is overlapped with the reference point, and is elastically deformed by an external force; and a second substrate that is separated from the elastic protrusion and installed on a side which is opposite to the first substrate are provided. When the external force is applied, a predetermined calculation is performed by using a pressure value which is detected through each pressure sensor, and the direction and the intensity of the applied external force are obtained.
Abstract:
An outer panel and an inner panel of a vehicle door form a closed sealing chamber. A pressure sensor is attached to the inner panel to detect a pressure within the closed sealing chamber. The pressure sensor detects an increase in pressure caused by constriction of the closed sealing chamber when a collision occurs to a vehicle door. The in-vehicle speaker supplies a sound wave into the closed sealing chamber and detects, as an inspection pressure, a pressure in the closed sealing chamber when the sound wave is supplied. In an initial state of a vehicle, the inspection pressure is compared with an initial pressure threshold value, which is set based on a pressure in the closed sealing chamber generated when the sound wave is supplied. When the inspection pressure is equal to or lower than the initial pressure threshold value, it is detected that the air-tightness of the closed sealing chamber is lowered.
Abstract:
One embodiment of the user interface system comprises: A tactile layer defining a tactile surface touchable by a user and plurality of deformable regions operable between a retracted state, wherein the deformable regions are flush with an undeformable region of the tactile layer; and an expanded state, wherein the deformable regions are proud of the undeformable region. A substrate joined to the undeformable region and defining a fluid port per deformable region and a fluid channel. A displacement device displacing the fluid through the fluid channel and the fluid ports to transition the deformable regions from the retracted state to the expanded state. A first and a second pressure sensor detecting changes in fluid pressure within the fluid due to a force applied to a particular deformable region. A processor determining the particular deformable region to be location of the input force based upon the detected fluid pressure changes.
Abstract:
A tactile sensor includes a pressure transducer encapsulated in an elastic material that defines a contact surface and provides a transmission path that transmits contact forces or pressure distributions applied to the contact surface to the pressure transducer. The pressure transducer can be enclosed in a protective housing that defines a chamber around the transducer. The housing can include one or more openings that expose the chamber to the exterior pressure. The tactile sensor can be made by applying the elastic material in liquid form and exposing the housing to a vacuum that removes air inside the chamber allowing the liquid elastic material to flow into the chamber. Once cured, the elastic material defines a contact surface of the tactile sensor and serves to transfer contact forces applied to the contact surface to the transducer.
Abstract:
Pressure sensing devices for use with an inflatable bladder and monitoring apparatus for an at rest subject are disclosed herein. The device can comprise a housing comprising a recess and configured to be welded in a seam of the inflatable bladder. A pressure sensor can be located within the recess with a sensing side configured to be exposed to the cavity of the inflatable bladder and a reference side configured to be exposed to ambient air. A printed circuit board can be located within the recess and coupled to the pressure sensor. The pressure sensor is operable to detect a pressure change within the cavity due to a force exerted by a subject on the inflatable bladder.
Abstract:
A pressure sensor for measuring the location and intensity of an applied pressure, including an elastomeric sheet; and a plurality of micro-channels embedded in the elastomeric sheet.
Abstract:
A weight sensing pad for controlling activation of an automobile airbag, the weight sensing pad comprising a bladder member having an interior volume defined by first and second sheets perimetrically bonded together, wherein the interior volume of the bladder member is subdivided into a plurality of cells by a plurality of small, substantially circular welds between the first and second sheets, the plurality of cells being in fluid communication with each other; and a fluid contained within the interior volume of the bladder member, whereby the automobile airbag is activated upon a change in pressure caused by displacement of a volume of the fluid in the interior volume of the bladder.