Abstract:
In a field emission-type electron source (10), a strong field drift layer (6) and a surface electrode (7) consisting of a gold thin film are provided on an n-type silicon substrate (1). An ohmic electrode (2) is provided on the back surface of the n-type silicon substrate (1). A direct current voltage is applied so that the surface electrode (7) becomes positive in potential relevant to the ohmic electrode (2). In this manner, electrons injected from the ohmic electrode (2) into the strong field drift layer (6) via the n-type silicon substrate (6) drift in the strong field drift layer (6), and is emitted to the outside via the surface electrode (7). The strong field drift layer (6) has: a number of semiconductor nanocrystals (63) of nano-meter order formed partly of a semiconductor layer configuring the strong field drift layer (6); and a number of insulating films (64) each of which is formed on the surface of each of the semiconductor nanocrystals (63) and each having film thickness to an extent such that an electron tunneling phenomenon occurs.
Abstract:
An array of field emission electron sources and a method of preparing the array which discharges electrons from desired regions of a surface electrode of field emission electron sources. The field emission electron source 10 comprises an electrically conductive substrate of p-type silicon substrate 1; n-type regions 8 of stripes of diffusion layers on one of principal surfaces of the p-type silicon substrate, strong electric field drift layers 6 formed on the n-type regions 8 which is made of oxidized porous poly-silicon for drifting electrons injected from the n-type region 8; poly-silicon layers 3 between the strong field drift layers 6; surface electrodes 7 of the stripes of thin conductive film formed in a manner to cross over the stripes of the strong field drift layer 6 and the poly-silicon layers 3. By selecting a pair of the n-type regions 8 and the surface electrodes 7 and thereby making electron emitted from the crossing points due to combination of the surface electrode 7 to be electrically applied and the n-type region 8 to be electrically applied, electrons can be discharged from desired regions of the surface electrodes 7.
Abstract:
A display device has an emitting region constituted by a plurality of first electrodes provided on a substrate and extending in parallel, a plurality of second electrodes provided on the first electrodes and extending substantially perpendicularly to the first electrodes, and a plurality of emission sites for emitting electrons or light respectively connected to a plurality of intersections between the first and second electrodes and arranged on the substrate and has a peripheral region surrounding the emitting region on the substrate. In this display device, first and second groups of external repeating terminals for the first and second electrodes are collectively provided side by side in a part of the peripheral region.
Abstract:
A lower electrode (2) and surface electrode (7) composed of a layer-structured conductive carbide layer is formed on one principal surface side of the substrate (1) composed of an insulative substrate such as a glass or ceramic substrate. A non-doped polycrystalline silicon layer (3) is formed on the lower electrode (2). An electron transit layer (6) composed of an oxidized porous polycrystalline silicon is formed on the polycrystalline silicon layer (3). The electron transit layer (6) is composed of a composite nanocrystal layer including polycrystalline silicon and many nanocrystalline silicons residing adjacent to a grain boundary of the polycrystalline silicon. When voltage is applied between the lower electrode (2) and the surface electrode (7) such that the surface electrode (7) has a higher potential, electrons are injected from the lower electrode (2) toward the surface electrode (7), and emitted through the surface electrode (7) through the electron transit layer (6).
Abstract:
A display device includes a backside and a front-side substrates facing each other with a vacuum space therebetween; and a plurality of electron emission sites provided on the backside substrate. Each electron emission sites includes a bottom electrode formed on a surface of the backside substrate proximate to the vacuum space, an insulator layer formed over the bottom electrode, and a top electrode formed on the insulator layer and arranged individually apart from each other and facing the vacuum space. The display device also includes a plurality of bus electrodes for electrically connecting the neighboring top electrodes; and insulating protective films each provided between the bus electrode and the insulator layer and between the bus electrode and the backside substrate.
Abstract:
An electron emission elements integrated substrate comprising a substrate having a plurality of minute holes formed therein. Each hole extends in a direction of thickness of the substrate. An electron emission element is arranged in the each hole. The element comprises a first electrode, a second electrode and an insulating member disposed between the first and second electrodes.
Abstract:
A flat panel display for video and/or information display including a geometric array of individually energizable, low energy electron emitters in combination with an array of continuous channel electron multipliers for amplifying and directing the electron outputs of the emitters onto a phosphor screen to emit visible light.