Abstract:
A sound pickup system includes a sound source tracking device that is operable to obtain distance and direction values of a target sound source relative to the sound source tracking device, and that determines nearest and farthest ones of a plurality of microphones in a microphone array relative to the target sound source with reference to determined distances of the sound source tracking device from the microphones, and the distance and direction values obtained by the sound source tracking device. A signal processing unit includes a delay calculator for determining appropriate time delays for the microphones with reference to information from the sound source tracking device, and a delay processor for processing signals generated by the microphones in the microphone array by introducing the corresponding time delays determined by the delay calculator into the signals from the microphones.
Abstract:
A method and system for sound beam-forming using internal device speakers in conjunction with external speakers provides a low cost alternative to present external surround array systems. A processing circuit within an audio device or audio/visual (AV) device such as a digital television (DTV) generates signals for internal and external speakers that phase-align the internal speakers with the external speakers for beam-forming. The beam may be a surround beam directed away from a listening position so that surround channel information is only heard as reflections. Alternatively, the beam may be a “night mode” beam that concentrates sound at a particular location or multiple beams may be formed for picture-in-picture or other applications where it is desirable to provide multiple isolated listening locations.
Abstract:
The selection of a plurality of sound sources for the purposes of preferential presentation should be structured to be more convenient for hearing instrument wearers. For this purpose, provision is made to separate the signals of the plurality of sources picked up and present them one after another with the aid of a corresponding control unit. On the basis of the presentation, the user can, likewise by means of the control units, select one of the plurality of signals for the purposes of further processing. The selection is preferably effected by pressing a button or by looking in the direction of the desired source plus pressing a button by way of acknowledgment.
Abstract:
The present invention discloses a system for visualizing sound source energy distribution and a method thereof, wherein a propagation matrix and a window matrix are obtained firstly; next, an inverse operation of the propagation matrix is performed; next, a multiplication operation of the result of the inverse operation and the window matrix is performed; next, the result of the multiplication operation is transformed from the time domain to the frequency domain; thus, a sound source energy distribution reconstructor is established; then, an array of microphones is used to receive the sound source signals; next, a multi-channel capture device transforms the received sound source signals into digital sound source signals; lastly, a convolution operation is performed on the digital sound source signals and the sound source energy distribution reconstructor to obtain a visualized sound source energy distribution. Therefore, the present invention can provide the energy distributions of nearfield/farfield stable-state/unstable-state sound sources.
Abstract:
A sound processing system including at least one microphone, an audio processor, and at least one output device. The audio processor includes an analog beamformer, a microphone equalizer, and an apparent incidence processor. Two different embodiments of the apparent incidence processor are disclosed, that is, a wave generation method and a forward filtering method. Both embodiments use the same principles to estimate the properties of the individual waves of the sound field. With the present invention, it is possible to implement arbitrary directivity responses using a small number of microphones only, that is, two or three microphones. The present invention offers improved noise reduction also for environments with many independent noise sources. Furthermore, the present invention works for signals and noises with arbitrary statistics.
Abstract:
A handsfree communication system includes microphones, a beamformer, and filters. The microphones are spaced apart and are capable of receiving acoustic signals. The beamformer compensates for propagation delays between the direct and reflected acoustic signals. The filters are configured to a predetermined susceptibility level. The filter process the output of the beamformer to enhance the quality of the received signals.
Abstract:
A transducer senses sounds produced by a talker or other source and measures acceleration of air. Enhancement of acceleration is accompanied by reduction of the portion of the sound energy that escapes from the regions around the transducer. The result is a high sensitivity transducer, with increased privacy for use in communication systems, especially cell phones and in a multi-person environment. A pressure sensor array with a weighted output is sensitive to sound from a source talker only, and not to acoustic background noise, and not to a local loudspeaker. The weighted signal is a source sum pressure signal. The array produces a signal (using a different weighting) that corresponds to an estimate of a derivative of pressure. The derivative signal is proportional to the volume velocity fluctuations produced by the source. This signal is enhanced, rather than reduced. A local loudspeaker is driven to make the source sum pressure signal as small as desired. The loudspeaker is driven to produce volume velocity fluctuations approximately equal and opposite to those produced by the source. No compression of air arises due to the talker, and no sound is radiated into the far field. All happens because the system is driven to reduce the source pressure sum signal to below a desired threshold. It is not necessary to directly measure the volume velocity fluctuations of the talker source.
Abstract:
The invention relates to a method and a system for achieving increased directivity in listening situations where at least one microphone (1, 2, 3) is embedded in a first structure (11) and at least one microphone (4) is embedded in a second structure (10), the first and the second structure being freely movable relative to each other, the method comprising conveying a microphone signal from one structure (11) to a common processing unit (8) for the microphone signals in the other structure (10) and successively processing the signals for achieving a directional output based on the microphone input to both structures.
Abstract:
System (10) is disclosed including an acoustic sensor array (20) coupled to processor (42). System (10) processes inputs from array (20) to extract a desired acoustic signal through the suppression of interfering signals. The extraction/suppression is performed by modifying the array (20) inputs in the frequency domain with weights selected to minimize variance of the resulting output signal while maintaining unity gain of signals received in the direction of the desired acoustic signal. System (10) may be utilized in hearing aids, voice input devices, surveillance devices, and other applications.
Abstract:
A sensor with sound navigation and ranging applications is presented. The invention includes a pressure conduction composite sandwiched between electrically conductive elements so as to sense pressure associated with an acoustic wave via a change in conductance within the composite. One electrically conductive element is rigid and includes the hull of a vessel or wall of a sea-based device. The pressure conduction composite is composed of a non-conductive matrix having a conductive fill at or near the percolation threshold of the material system. The pressure conduction composite is highly resistive in its uncompressed state. However, resistance decreases with increasing compression. In preferred embodiments, sensors are arranged in an array architecture including planar and conformal configurations. The present invention has immediate application in submarines, ships, and sonobuoys.