Abstract:
An exemplary embodiment of the present invention relates to a conductive structure body that comprises a darkening pattern layer having AlOxNy, and a method for manufacturing the same. The conductive structure body according to the exemplary embodiment of the present invention may prevent reflection by a conductive pattern layer without affecting conductivity of the conductive pattern layer, and improve a concealing property of the conductive pattern layer by improving absorbance. Accordingly, a display panel having improved visibility may be developed by using the conductive structure body according to the exemplary embodiment of the present invention.
Abstract:
A through wiring substrate comprises a substrate having a pair of principal surfaces and a through hole penetrating between the pair of principal surfaces, the pair of principal surfaces and an inner surface of the through hole being electrically insulative; a through electrode provided on the inner surface of the through hole; a first wiring layer provided on one of the principal surfaces and connected to the through electrode; a second wiring layer provided on the other of the principal surfaces and connected to the through electrode; an underlying metal layer provided between the one of the principal surfaces and the first wiring layer; and catalyst metal particles existing between the underlying metal layer and the first wiring layer and between the through electrode and the inner surface of the through hole.
Abstract:
According to this invention, an oriented copper plate which has a highly developed cube texture and has strength and breaking elongation greater than those of a conventional material having a cube texture, a copper-clad laminate, a flexible circuit board that is excellent in terms of folding flexibility, and an electronic device are provided, and a process for producing the oriented copper plate is established. This invention relates: an oriented copper plate, which contains 0.03% by mass to 1.0% by mass of Cr, the remainder of which is composed of copper and inevitable impurities, wherein the copper plate has a main orientation so that the area percentage of a preferred orientation region is not less than 60.0%, the region satisfying a condition that allows each of a thickness direction of the copper plate and a specific in-plane direction of the copper plate to have an orientation difference of not more than 15° with respect to a basic copper crystal axis of unit lattice of copper, and wherein Cr precipitates having equivalent circle diameters of 4 nm to 52 nm are present at 300 precipitates/μm3 to 12000 precipitates/μm3; a copper-clad laminate and a flexible circuit board using the copper plate; and an electronic devices equipped with the flexible circuit board.
Abstract:
An electronic component module includes a substrate; at least one electronic component mounted on an electronic component mounting surface of the substrate; an insulating body covering the electronic component on the electronic component mounting surface of the substrate; and a metal film formed by sputtering, the metal film covering at least one exterior surface of the insulating body and at least one side surface of the substrate. The substrate has a recess portion formed on a periphery of the surface of the substrate that is opposite to the electronic component mounting surface, and the recess portion has a top surface parallel to the electronic component mounting surface and a side surface perpendicular to the top surface, and the metal film is extended to cover the top surface of the recess portion, without covering the side surface thereof. It obtains improved electromagnetic wave shielding effect and improved manufacturing efficiency.
Abstract:
According to this invention, an oriented copper plate which has a highly developed cube texture and has strength and breaking elongation greater than those of a conventional material having a cube texture, a copper-clad laminate, a flexible circuit board that is excellent in terms of folding flexibility, and an electronic device are provided, and a process for producing the oriented copper plate is established. This invention relates: an oriented copper plate, which contains 0.03% by mass to 1.0% by mass of Cr, the remainder of which is composed of copper and inevitable impurities, wherein the copper plate has a main orientation so that the area percentage of a preferred orientation region is not less than 60.0%, the region satisfying a condition that allows each of a thickness direction of the copper plate and a specific in-plane direction of the copper plate to have an orientation difference of not more than 15° with respect to a basic copper crystal axis of unit lattice of copper, and wherein Cr precipitates having equivalent circle diameters of 4 nm to 52 nm are present at 300 precipitates/μm3 to 12000 precipitates/μm3; a copper-clad laminate and a flexible circuit board using the copper plate; and an electronic devices equipped with the flexible circuit board.
Abstract:
An exemplary embodiment of the present invention relates to a conductive structure body that comprises a darkening pattern layer having AlOxNy, and a method for manufacturing the same. The conductive structure body according to the exemplary embodiment of the present invention may prevent reflection by a conductive pattern layer without affecting conductivity of the conductive pattern layer, and improve a concealing property of the conductive pattern layer by improving absorbance. Accordingly, a display panel having improved visibility may be developed by using the conductive structure body according to the exemplary embodiment of the present invention.
Abstract:
There is provided an electronic device. The electronic device includes: a wiring board; a first electronic component mounted on the wiring board and configured to emit an electromagnetic wave having a first frequency band; a second electronic component mounted on the wiring board and configured to emit an electromagnetic wave having a second frequency band; a first magnetic thin film covering the wiring board, the first electronic component and the second electronic component, wherein the first magnetic thin film has a composition corresponding to the first frequency band; and a second magnetic thin film covering the first magnetic thin film, wherein the second magnetic thin film has a composition corresponding to the second frequency band.
Abstract:
The present invention provides: a method for manufacturing a metallized substrate by which a fine pattern can be formed more easily; a metallized substrate manufactured by the method; and a metal paste composition to be used in the method. The metallized substrate has: a sintered nitride ceramic substrate (10); a titanium nitride layer (20) on the sintered substrate (10); an adhesion layer (30) on the titanium nitride layer (20); and a copper plating layer (40) on or above the adhesion layer (30), wherein the adhesion layer (30) contains copper and titanium, and has a thickness of no less than 0.1 μm and no more than 5 μm.