Abstract:
In a semiconductor device, a substrate includes a plurality of line conductors which penetrate the substrate from a top surface to a bottom surface of the substrate. A semiconductor chip is secured in a hole of the substrate. A first insulating layer is formed on the top surfaces of the substrate and the semiconductor chip. A first wiring layer is formed on the first insulating layer and electrically connected via through holes of the first insulating layer to the semiconductor chip and some line conductors exposed to one of the through holes. A second insulating layer is formed on the bottom surfaces of the substrate and the semiconductor chip. A second wiring layer is formed on the second insulating layer and electrically connected via a through hole of the second insulating layer to some line conductors exposed to the through hole.
Abstract:
There is provided a method of manufacturing a conductive film. The method includes: (a) providing an anodized layer having a plurality of through holes extending therethrough in its thickness direction; (b) forming a plurality of linear conductors by filling each of the through holes with a conductive material; (c) forming protection layers on both surfaces of the anodized layer; (d) removing the anodized layer to form a plurality of gaps between the linear conductors; (e) forming an organic insulation layer between the protection layers to fill the gaps with the organic insulation layer; and (f) removing the protection layers.
Abstract:
The present invention provides a light emitting diode (LED) circuit board with a multi-directional electrical connection. The board includes a board body with a surface and an assembly plane as well as four sides and corresponding corners, and a plurality of positive and negative electric contacts, separately arranged onto the surface of the board body nearby four sides, and also arranged at intervals. The circuit of the LED circuit board is simplified, helping to facilitate multi-directional electrical connection and expansion, and to improve significantly the paving efficiency of the LED circuit board with better practicability and industrial benefits.
Abstract:
A wiring board is manufactured by a step of forming a meshy cylindrical body, where plural conductive rings are connected to each other at plural positions in the respective peripheral direction, a step of forming laminated meshy sheets, by squashing the meshy cylindrical body in the radial direction, a step of inserting an insulation sheet between the meshy sheets, and a step of forming lacking portions at a position in the peripheral direction of conductive rings of the meshy sheets. It becomes possible to directly join a semiconductor chip to the conductive ring of the meshy sheet, and therefore, a wiring circuit can be obtained without using a solder joint.
Abstract:
A system, method, and device for applying conductive bonding material to a substrate are disclosed. The method includes providing conductive bonding material in a plurality of cavities of a mold. A total number of cavities in the plurality of cavities being greater than a total number of at least one conductive pad of a circuit supporting substrate corresponding to the mold. The conductive bonding material in the mold is heated to a reflow temperature of the conductive bonding material. At least one wettable surface is placed in substantial contact with the heated conductive bonding material in at least one cavity. The mold and the corresponding circuit supporting substrate are brought in close proximity to each other such that the heated conductive bonding material in at least one cavity comes in contact with at least one conductive pad of the corresponding circuit supporting substrate.
Abstract:
A wiring board is manufactured by a step of forming a meshy cylindrical body, where plural conductive rings are connected to each other at plural positions in the respective peripheral direction, a step of forming laminated meshy sheets, by squashing the meshy cylindrical body in the radial direction, a step of inserting an insulation sheet between the meshy sheets, and a step of forming lacking portions at a position in the peripheral direction of conductive rings of the meshy sheets. It becomes possible to directly join a semiconductor chip to the conductive ring of the meshy sheet, and therefore, a wiring circuit can be obtained without using a solder joint.
Abstract:
An anisotropically conductive structure for providing electrical interconnection between electronic components, and the process for making such anisotropically conductive structure. The anisotropically conductive structure includes a dielectric matrix having a substantially uniform thickness; and a plurality of conductive elements embedded in the dielectric matrix.
Abstract:
The present invention provides a number of interrelated methods for the production of random and ordered arrays of particles and recesses as well as films containing such arrays and recesses. The present invention also relates to the random and ordered arrays of particles and films prepared therefrom. The ordered arrays are obtained by the use of ferrofluid compositions which may be curable, solidifiable on non-curing/non-solidifiable. The arrays and films may contain electrically-conductive particles useful in electronic applications for effecting contact between leads or pads.
Abstract:
Apparatus and method for assembling solder balls in a selected one of several different patterns for delivery to connector pads on an integrated circuit package, or other receiver, includes a universal template containing holes at locations in an aggregate pattern of all hole locations for the several different patterns, and includes a subtemplate for each individual different pattern that contains posts at locations for insertion from the rear of the template into holes therein at locations where no surface recess is desired. The universal template may remain aligned with an assembly jig or holder of packages while only the subtemplate is changed to change the surface pattern of holes into which solder balls may then be distributed.
Abstract:
A metallurgical interconnect composite is provided defined by a compliant, metallurgical, open cell, porous substrate which has a plurality of Z-axis conductive pathways extending from one side of the substrate to the other side. Each conductive pathway terminates in a solder covered surface area.