Abstract:
A liquid crystal display device includes an illuminator and a liquid crystal panel for performing displaying by using light which is emitted from the illuminator. The liquid crystal panel includes a pair of substrates, a liquid crystal layer provided between the pair of substrates, and a pair of alignment films provided on sides of the pair of substrates facing the liquid crystal layer. At least one of the alignment films is a photo-alignment film which is imparted with an orientation regulating force through a photo-alignment treatment, and the illuminator includes a light source causing primary generation of at least blue light, among other light which is used for displaying.
Abstract:
An antireflective film is provided and includes: a transparent substrate; at least one conductive layer formed from a composition including at least one transparent conductive polymeric material and a compound forming a cross-liking site, the compound having a plurality of cross-linking reactive groups, at least one of which cross-links with the transparent conductive polymeric material; and at least one low refractive index layer.
Abstract:
In the present invention, it is an object to improve display quality by improving response speed of a liquid crystal element in a liquid crystal display device, in particular, response speed in the case of falling. In the present invention, it is characterized that a liquid crystal layer is divided into plural regions (domains) substantially by mixing a chemical compound including a liquid crystal skeleton in a liquid crystal layer having existing liquid crystal molecules as a technique to improve response speed of a liquid crystal element in a liquid crystal display device for solving the above problem.
Abstract:
The invention relates to a liquid crystal display used as a display unit of an electronic apparatus and provides a liquid crystal display which can achieve high display quality. The liquid crystal display includes a pair of substrates provided opposite to each other, a liquid crystal having negative dielectric constant anisotropy sealed between the substrates, an alignment film formed on each of surfaces of the substrates facing each other for vertically aligning the liquid crystal, the film being formed using a material including an epoxy type cross linking agent at a concentration in the range from 0% by weight to 0.01% by weight inclusive, and a polymer layer for regulating the direction of alignment of the liquid crystal formed in the vicinity of an interface between the liquid crystal and the alignment film as a result of polymerization of a polymeric component included in the liquid crystal.
Abstract:
An optical film laminate that has predefined slit lines for enhancing both product accuracy and manufacturing speed in liquid-crystal display element manufacturing to radically improve manufacturing yield. The optical film laminate formed as a continuous web with the predefined slit lines for use in a continuous manufacturing system by laminating optically functional film sheets to liquid-crystal panels. The optical film laminate having defect-free regions having a predefined length corresponding to the dimension of a liquid-crystal panel and defective regions having a predefined length different from the defect-free region, based on the detected position of defects. The optical film laminate having a carrier film releasably laminated to an adhesive layer, wherein defect-free normal polarizing sheets and a defective polarizing sheets are formed on the carrier film by forming slit lines corresponding to above regions along the transverse direction of the optical film laminate.
Abstract:
An optical film laminate that has predefined slit lines for enhancing both product accuracy and manufacturing speed in liquid-crystal display element manufacturing to radically improve manufacturing yield. The optical film laminate formed as a continuous web with the predefined slit lines for use in a continuous manufacturing system by laminating optically functional film sheets to liquid-crystal panels. The optical film laminate having defect-free regions having a predefined length corresponding to the dimension of a liquid-crystal panel and defective regions having a predefined length different from the defect-free region, based on the detected position of defects. The optical film laminate having a carrier film releasably laminated to an adhesive layer, wherein defect-free normal polarizing sheets and a defective polarizing sheets are formed on the carrier film by forming slit lines corresponding to above regions along the transverse direction of the optical film laminate.
Abstract:
An object is to uniformly align liquid crystal molecules without requiring a step of forming an alignment film. A material for forming a self-assembled monolayer is dispersed in a liquid crystal material, and the mixture is interposed between a pair of substrates by a liquid crystal injection method or a liquid crystal dropping method. A silane coupling agent (the material for forming a self-assembled monolayer) injected or dropped with the liquid crystal material adsorbs to a substrate interface (or a surface of an electrode formed over a substrate) after the injection or dropping, thereby forming a self-assembled monolayer. This self-assembled monolayer serves as an alignment film, and enables long axes of liquid crystal molecules to be approximately perpendicular to a substrate and the liquid crystal molecules to be uniformly aligned.
Abstract:
Microstructured optical films, assemblies of films including at least one microstructured optical film, and (e.g. illuminated) display devices including a single microstructured optical film or assembly.
Abstract:
Provided are an optical film for use in flat panel display (FPD) devices, and a method for manufacturing the same. Particularly, there is provided a method for imparting surface roughness to an optical film, which includes forming dented craters having a radius of curvature of 10 nm-100 μm on the surface of an optical film obtained by a solution casting process and forming a plateau between one crater and another crater. There is also provided an optical film obtained by the same method.
Abstract:
A protective film for polarizing plate comprising k layers (k is an integer of 2 or more) of thermoplastic resin layer laminated, wherein a refractive index ni(380) at a wavelength of 380 nm and a refractive index ni(780) at a wavelength of 780 nm in the i th thermoplastic resin layer as well as a refractive index ni+1(380) at a wavelength of 380 nm and a refractive index ni+1(780) at a wavelength of 780 nm in the i+1 th thermoplastic resin layer have a relationship in ∥ni(380)−ni+1(380)|−|ni(780)−ni+1(780)∥≦0.02 (where, i is an integer of 1 to k−1). A polarizing plate is obtained by bonding the protective film for the polarizing plate and a polarizer. And a liquid crystal display comprising the polarizing plate and a liquid crystal panel.