Abstract:
A linear actuator is used with a vacuum chamber in which plasma is generated. The linear actuator comprises a moving member extending between the exterior and the interior of the vacuum chamber through an opening provided in the vacuum chamber so as to be rectilinearly reciprocated, a drive section configured to reciprocate the moving member, a cover that covers the moving member, and a slide seal section that provides a seal between the interior and the exterior of the vacuum chamber while allowing the cover to slide thereon. The cover covers a range of the moving member which is moved into both of the interior and the exterior of the vacuum chamber while the moving member is reciprocated by the drive section, and an outer surface of the cover is smaller in the amount of gas adsorption per unit area than an outer surface of the moving member.
Abstract:
A three-dimensional measuring device includes an extraction unit that extracts an image data set with a brightness value of each of pixels in image data within an effective range from among a plurality of image data sets at each of coordinate positions of an object to be measured, and a three-dimensional measurement unit that performs three-dimensional measurement relating to each of the coordinate positions of the object to be measured based on the extracted image data set. The extraction unit extracts the image data set imaged under a pattern light with the highest irradiation brightness among a plurality of types of pattern lights when there is a plurality of sets of the image data sets with the brightness value of each of the pixels in the image data within the effective range from among the plurality of the image data sets.
Abstract:
A temperature control system includes a first temperature adjustment unit storing fluid at a first temperature; a second temperature adjustment unit storing fluid at a second temperature higher than the first temperature; a low-temperature flow path for passing fluid supplied from the first temperature adjustment unit; a high-temperature flow path for passing fluid supplied from the second temperature adjustment unit; a bypass flow path for circulating fluid; a combination flow path for passing fluid from the low-temperature flow path, the high-temperature flow path, and the bypass flow path merged at a merging part; a temperature adjustment part that passes fluid from the combination flow path and cools/heats a member of a semiconductor manufacturing device; and a control device that controls valve positions of variable valves attached to the three flow paths upstream of the merging part and adjusts the flow rate distribution ratio for the three flow paths.
Abstract:
A fluid control system includes a vacuum chamber, a gas supply source to supply gas as a fluid, an exhaust pipe to discharge the fluid from the vacuum chamber, a gas supply pipe to connect the vacuum chamber to the gas supply source, and a pressure sensor to detect an internal pressure of the vacuum chamber. This system further includes a flowmeter placed between the gas supply source and the vacuum chamber, a proportional valve placed between the flowmeter and the vacuum chamber, a pressure controller to control the proportional valve based on output of the pressure sensor, a metering valve placed on the exhaust pipe, and a flow controller to control the metering valve based on an output of the flowmeter.
Abstract:
In a monitoring system, when there is an evaluation that a product is defective, in a solder print inspecting device that is subject to monitoring, that information is sent to a mobile terminal possessed by an operator. The operator who views the notification performs, through the mobile terminal, a checking task for evaluating whether or not the evaluation result regarding the printed substrate that has been evaluated as a defective product is correct. Depending on the evaluation result, an operating instruction is sent to the solder print inspecting device, which has temporarily stopped the printed substrate. If correction information instructing that the defective-product evaluation be corrected to a non-defective-product evaluation is sent from a mobile terminal to the solder print inspecting device, the solder print inspecting device corrects the defective-product evaluation to a non-defective-product evaluation, and releases the temporary stop of the printed substrate.
Abstract:
A target supply apparatus includes a tank for storing a liquid target material, a nozzle for outputting the liquid target material in the tank, and a gas supply source for supplying gas into the tank, and controls a gas pressure inside the tank with a pressure of the gas supplied from the gas supply source which is provided with a pressure regulator. The target supply apparatus also includes a pressure-decrease gas passage of which one end is connected to the tank and the other end forms an exhaust port, a pressure-decrease valve provided on the pressure-decrease gas passage, and a controller for controlling open/close of the pressure-decrease valve. The controller, when the target material is caused not to output from the nozzle, opens the pressure-decrease valve and decreases the pressure inside the tank.
Abstract:
A liquid feed pump includes a pump housing, a diaphragm forming a pump chamber together with the recessed portion surface and partitioning the pump chamber from the hole, a reciprocating member reciprocatably inserted into the hole and reciprocating to press the diaphragm to deform, a driving member displacing the reciprocating member periodically in a direction of reciprocation, a seal portion sandwiching the diaphragm to seal the diaphragm in a position around an outer peripheral side of the recessed portion surface, a diaphragm receiving surface provided between the seal portion and the opening portion, and its contact area contacting the diaphragm decreases in response to an increase in the displacement of the reciprocating member to the recessed portion surface side and increases in response to an increase in the internal pressure of the pump chamber.
Abstract:
A fluid control valve includes: a valve main body including an inlet port and an outlet port, each being formed on opposite side surfaces; and a mounting plate attached to a lower end of the valve main body; wherein the valve main body has side surfaces located perpendicular to the opposite side surfaces and formed with locking protrusions, the mounting plate is formed with locking arms each extending from an upper end of the mounting plate, the locking arms each having a locking pawl facing and engaging with the protrusion, the valve main body is formed with an annular rib about an central axis on the lower end of the valve main body, and the upper end of the mounting plate is formed with a press-fit rib including a press-fit portion press-fitted in a wall surface of the annular rib.
Abstract:
In a fluid control device, a valve body is prevented from being pressed forcefully against a valve seat or the like, and an excessive load is prevented from acting on a motor. A flow rate adjustment device includes a first engagement portion, and a second engagement portion that is capable of moving relative to the first engagement portion and transmitting and receiving rotary force. The flow rate adjustment device includes a valve body that adjusts an opening of a flow passage, and a rod that is coupled to the valve body. The flow rate adjustment device further includes a male screw portion and a female screw portion that are intermeshed so as to be fed relative to each other in the axial direction, a projecting portion that restricts movement of the second engagement portion, and a first cylinder that restricts movement of the rod.