Abstract:
A reverse conducting insulated gate bipolar transistor (IGBT) manufacturing method, comprising the following steps: providing a substrate having an IGBT structure formed on the front surface thereof; implanting P+ ions onto the back surface of the substrate; forming a channel on the back surface of the substrate through photolithography and etching processes; planarizing the back surface of the substrate through a laser scanning process to form P-type and N-type interval structures; and forming a back surface collector by conducting a back metalizing process on the back surface of the substrate. Laser scanning process can process only the back surface structure requiring annealing, thus solve the problem of the front surface structure of the reverse conducting IGBT restricting back surface annealing to a low temperature, improving the P-type and N-type impurity activation efficiency in the back surface structure of the reverse conducting IGBT, and enhancing the performance of the reverse conducting IGBT.
Abstract:
A preparation method for a power diode, comprising: providing a substrate (10), the substrate (10) having a front surface and a back surface opposite to the front surface, an N-type layer (20) growing on the front surface of the substrate (10), and the N-type layer (20) having a first surface deviating from the substrate (10); forming a terminal protection ring (31, 32, 33); forming an oxide layer (50), and performing knot pushing on the terminal protection ring (31, 32, 33); conducting photoetching using a photoetching plate of an active region and etching the oxidation layer (50) of the active region, and forming a gate oxide layer (60) on the first surface of the N-type layer (20) of the active region; depositing on the gate oxide layer (60) to form a polysilicon layer (70); conducting photoetching using a polysilicon photoetching plate, taking a photoresist (40) as a mask layer to inject P-type ions into the N-type layer (20), and forming a P-type body region (82) beneath the polysilicon layer (70) through ion scattering; forming an N-type heavily doped region; forming a P+region; conducting thermal annealing, activating injected impurities and removing the photoresist (40); and conducting metallization processing on the first surface and the back surface of the substrate (10).
Abstract:
A method for preparing a power diode, including: providing a substrate (10), growing a N type layer (20) on the front surface of the substrate (10); forming a terminal protecting ring; forming an oxide layer (30), knot-pushing to the terminal protecting ring; forming a gate oxide layer (60), depositing a poly-silicon layer (70) on the gate oxide layer (60); depositing a SiO2 layer (80) on the surface of the poly-silicon layer (70) and a oxide layer (50); forming a N type heavy doped region (92); forming a P+ region; removing a photoresist, implanting P type ions using the SiO2 layer (80) as a mask layer, and forming a P type body region; heat annealing; forming a side wall structure in the opening of the poly-silicon layer (70), the gate oxide layer (60) being etched, and removing the SiO2 layer (80); and processing a front surface metallization and a back surface metallization treatment. According to the method for preparing the power diode, by adjusting the isotropy etching level of the SiO2 layer and the ion implanting dose and energy, the threshold voltage of a DMOS structure can be adjusted, and the adjustment of the forward voltage drop for the device can be achieved.
Abstract:
A preparation method for a power diode, comprising: providing a substrate (10), the substrate (10) having a front surface and a back surface opposite to the front surface, an N-type layer (20) growing on the front surface of the substrate (10), and the N-type layer (20) having a first surface deviating from the substrate (10); forming a terminal protection ring (31, 32, 33); forming an oxide layer (50), and performing knot pushing on the terminal protection ring (31, 32, 33); conducting photoetching using a photoetching plate of an active region and etching the oxidation layer (50) of the active region, and forming a gate oxide layer (60) on the first surface of the N-type layer (20) of the active region; depositing on the gate oxide layer (60) to form a polysilicon layer (70); conducting photoetching using a polysilicon photoetching plate, taking a photoresist (40) as a mask layer to inject P-type ions into the N-type layer (20), and forming a P-type body region (82) beneath the polysilicon layer (70) through ion scattering; forming an N-type heavily doped region; forming a P+region; conducting thermal annealing, activating injected impurities and removing the photoresist (40); and conducting metallization processing on the first surface and the back surface of the substrate (10).
Abstract:
A field-stop reverse conducting insulated gate bipolar transistor and a manufacturing method thereof. The transistor comprises a terminal structure (200) and an active region (100). An underlayment of the field-stop reverse conducting insulated gate bipolar transistor is an N-type underlayment, the back surface of the underlayment is provided with an N-type electric field stop layer (1), one surface of the electric field stop layer (1) departing from the underlayment is provided with a back-surface P-type structure (10), and the surface of the back-surface P-type structure (10) is provided with a back-surface metal layer (12). A plurality of polysilicon filling structures (11) which penetrate into the electric field stop layer (1) from the back-surface P-type structure (10) are formed in the active region (100).
Abstract:
A readout circuit with a self-detection circuit and a control method therefor. The circuit comprises a pre-charging circuit and a control circuit, the pre-charging circuit and the control circuit being connected to a first node and used for charging a memory unit. The readout circuit also comprises a detection circuit, the detection circuit and the pre-charging circuit being connected to the first node. The detection circuit comprises a third NOT gate, a fourth NOT gate, a first NAND gate, a sixth NOT gate, a first trigger and an eighth NOT gate. In such a manner of detecting the reversal of the first NOT gate through the reversal of the third NOT gate, the charging duration of the first node (A) can be greatly reduced, thereby reducing the reading duration of the whole circuit. At the same time, the re-occurrence of a state of charging the circuit can be avoided after pre-charging has ended.
Abstract:
A method of producing a Macro Read Only Memory (MROM) memory based on a One Time Programmable (OTP) memory is provided. The method includes: removing a floating gate of a second P-type Metal Oxide Semiconductor (PMOS) transistor of an OTP memory cell for storing data “0” in an OTP memory map, such that the OTP memory cell being transferred to a MROM memory cell for storing data “0”, and retaining an original structure of the OTP memory cell for storing data “1” in the OTP memory map, such that the original structure being used as a MROM memory cell for storing data “1”, thus forming a MROM memory map; and producing a MROM memory according to a MROM memory map. The OTP memory map is debugged to determine data which can be changed into the MROM memory map, and an OTP process can be transferred into a MROM process by adjusting only one mask during a producing process.
Abstract:
A field-stop reverse conducting insulated gate bipolar transistor and a manufacturing method therefor. The transistor comprises a terminal structure (200) and an active region (100). An underlayment of the field-stop reverse conducting insulated gate bipolar transistor is an N-type underlayment, the back surface of the underlayment is provided with an N-type electric field stop layer (1), one surface of the electric field stop layer departing from the underlayment is provided with a back-surface P-type structure (10), and the surface of the back-surface P-type structure is provided with a back-surface metal layer (12). A plurality of notches (11) which penetrate through the back-surface P-type structure (10) from the back-surface metal layer (12) to the electric field stop layer (1) are formed in the active region (100), and metals of the back-surface metal layer (12) are filled into the notches (11) to form a metal structure which extends into the electric field stop layer (1).
Abstract:
A trench-type DMOS device and a manufacturing method thereof are provided. The DMOS device includes: a substrate (100) used as a public drain region, an active region (102) and a voltage-dividing ring (103) formed on the substrate (100), and a first dielectric layer (110) formed on the substrate (100). Multiple trenches are located on the first dielectric layer (110), and the trenches extend from the surface of the first dielectric layer (110) into the interior of the substrate (100). The trenches comprise at least one first trench (141) distributed in the active region (102) and a second trench (142) outside the active region (102). A gate oxide layer (144) is formed in the trench and polycrystalline silicon (143) is filled to form a gate. The active region (102) further comprises a source electrode region (104) and a P-type heavily doped region (105) under the source electrode region (104). A second dielectric layer (120) covers the first dielectric layer (110) and the multiple trenches. A metal layer (130) covers the second dielectric layer (120) to form a first electrode region (131) and a second electrode region (132). By increasing the cross-sectional area of the polycrystalline silicon (143) in the gate, the resistance of the gate is reduced.
Abstract:
A method of producing a MROM memory based on an OTP memory is provided. The method includes: removing the floating gate of the second PMOS transistor of the OTP memory cell for storing data “0” in the OTP memory map, such that the OTP memory cell being transferred to a MROM memory cell for storing data “0”, and retaining the original structure of the OTP memory cell for storing data “1” in the OTP memory map, such that the original structure being used as a MROM memory cell for storing data “1”, thus forming a MROM memory map; and producing a MROM memory according to the MROM memory map. According to the present invention, the OTP memory map which is debugged and has determined data can be changed into the MROM memory map, and the OTP process can be transferred into the MROM process by adjusting only one mask during the producing process. The present invention greatly saves the time and cost of the device programming and testing, thus simplifying the process and saving the cost, increasing the profit.