Abstract:
A multilayer printed circuit board has an IC chip included in a core substrate in advance and a mediate layer provided on a pad of the IC chip. Due to this, it is possible to electronically connect the IC chip to the multilayer printed circuit board without using lead members and a sealing resin. Also, by providing the mediate layer made of copper on the die pad, it is possible to prevent resin residues on the pad and to improve connection characteristics between the pad and a via hole and reliability.
Abstract:
An optical interconnect device includes a first substrate, a second substrate, an optical waveguide, an electrical wiring and a switching device. The first substrate has an electrical wiring circuit, an electrical-optical converter for converting an electrical signal to an optical signal, and a light emitting device for emitting a light. The second substrate has an electrical wiring circuit, an optical-electrical converter for converting the optical signal to the electrical signal, and a light receiving device for receiving the light from the light emitted device. The optical waveguide optically connects the light emitting and light receiving devices. The electrical wiring electrically connects the electrical wiring circuits of the first and second substrates. The switching device determines a fast signal of data to be transmitted via the optical substrate and a slow signal of data to be transmitted via the electrical wiring.
Abstract:
A printed circuit board has a core substrate including a resin substrate having an opening, a capacitor formed in the opening and having a first electrode structure having a portion facing to the upper surface of the core substrate and a second electrode structure having a portion facing to the lower surface of the core substrate, an upper insulating layer formed over the upper surface of the core substrate and having a conductive circuit formed over the upper insulating layer and a via hole electrically connecting the portion of the first electrode structure and the conductive circuit of the upper insulating layer, and a lower insulating layer formed over the lower surface of the core substrate and having a conductive circuit formed over the lower insulating layer and a via hole electrically connecting the portion of the second electrode structure and the conductive circuit of the lower insulating layer.
Abstract:
An intermediate layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the intermediate layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
Abstract:
A method of manufacturing a multilayer printed circuit board having interlayer insulating layers and conductor layers repeatedly formed on a substrate, via holes formed in the interlayer insulating layers, and establishing electrical connection through the via holes, including containing an electronic component in said substrate, removing a film on a surface of a die pad of said electronic component, forming a mediate layer to be connected to a via hole of a lowermost interlayer insulating layer, on said die pad, forming the interlayer insulating layers on said substrate, and forming the via holes connected to the conductor circuits and the mediate layers, in said interlayer resin insulating layers.
Abstract:
A printed circuit board includes a core substrate having an opening portion, an electronic component provided in the opening portion of the core substrate and including a dielectric body, a first electrode formed over the dielectric body, and a second electrode formed over the dielectric body such that the dielectric body is interposed between the first electrode and the second electrode, and a resin filling a gap between the core substrate and the electronic component in the opening portion of the core substrate. The resin filling the gap includes a filler.
Abstract:
A method for manufacturing a printed circuit board, including providing a core substrate and an electronic component contained in the core substrate, the electronic component having a die pad, forming a positioning mark on the core substrate, forming an interlayer insulating layer over the core substrate and the electronic component, forming a via hole opening connecting to the die pad of the electronic component through the interlayer insulating layer in accordance with the positioning mark on the core substrate, and forming a via hole structure in the via hole opening in the interlayer insulating layer such that the via hole structure is electrically connected to the die pad.
Abstract:
The present invention has for its object to provide a multilayer printed circuit board which is very satisfactory in facture toughness, dielectric constant, adhesion and processability, among other characteristics. The present invention is directed to a multilayer printed circuit board comprising a substrate board, a resin insulating layer formed on said board and a conductor circuit constructed on said resin insulating layer, wherein said resin insulating layer comprises a polyolefin resin.
Abstract:
A multilayer printed circuit board has an IC chip 20 included in a core substrate 30 in advance and a transition layer 38 provided on a pad 24 of the IC chip 20. Due to this, it is possible to electrically connect the IC chip to the multilayer printed circuit board without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on the die pad 24, it is possible to prevent resin residues on the pad 24 and to improve connection characteristics between the pad 24 and a via hole 60 and reliability.
Abstract:
A transition layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.