Abstract:
An organic electroluminescence element that uses a compound expressed by the following general formula has low inter-molecular interaction and high orientation during vapor deposition, and by using compounds that are resistant to aggregation, luminous efficiency is high, and there is little change in chromaticity accompanying drive deterioration (either V1 or W1 and either V2 or W2 form rings, the rings formed by V1 and V2 are six-membered rings, and the rings formed by W1 and W2 are five-membered rings; A2 to A4 and A6 to A8 represent CRZ or N, and RZ represents a hydrogen atom or a substituent; and R2, R3, R7, and R8 represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a fluorine atom, a hydrogen atom [sic], or a deuterium atom.).
Abstract:
An organic electroluminescent element which has a substrate, a pair of electrodes disposed on this substrate and composed of an anode and a cathode, and at least one organic layer disposed between these electrodes and including a light-emitting layer, and in which a compound expressed by General Formula 1-1 is contained in at least one layer of the aforementioned light-emitting layer(s) exhibits high luminous efficiency, excellent blue color purity, and little change in chromaticity accompanying drive deterioration. (R1 to R10 [each] represent a hydrogen atom or a substituent, and at least one of R1 to R10 is a substituent expressed by General Formula 1-2; however, a pyrene skeleton is never contained in R1 to R10; the asterisk indicates the bonding position with a pyrene ring; X1 to X5 [each] represent a carbon atom or a nitrogen atom, and at least one of X1 to X5 is a nitrogen atom; R11 to R15 [each] represent a hydrogen atom or a substituent, and at least one of R11 to R15 is an alkyl group or a silyl group; however, if X1 to X5 represent nitrogen atoms, there is no R11 to R15 bonded on these nitrogen atoms.)
Abstract:
An object of the present invention is to provide, for the production of isobutene, a high-yielding, highly-selective, and long-term stable production process of isobutene from TBA. With respect to the production of TBA, an object of the present invention is to provide a TBA production process in which, through long-term stable maintenance of a high reaction activity, long-term continuous operation is enabled and the productivity is improved. The present invention discloses a process for producing isobutene that employs a dehydration temperature of from 200 to 450° C. in use of an alumina catalyst that contains a Na content of 0.6% by weight or less in terms of NaO2 and a Na content of 0.4% by weight in terms of NaO2, and has a specific surface area of from 200 to 600 m2/g.
Abstract:
A micro electro mechanical system (MEMS) device includes: a fixed electrode made of silicon and provided above a semiconductor substrate; a movable electrode made of silicon and arranged in a mechanically movable manner by having a gap from the semiconductor substrate; and a wiring layered part that is provided around the movable electrode, covers a portion of the fixed electrode and includes wiring. One of the fixed electrode and the movable electrode is implanted with an impurity ion and at least a part of the portion of the fixed electrode covered by the wiring layered part is silicidized.
Abstract:
The organic electroluminescence device has, on a substrate thereof, a pair of electrodes and at least one organic layer including a light emitting layer between the electrodes, wherein the light emitting layer contains a phosphorescent complex material containing a specific monoanionic bidentate ligand and the device contains, in a layer sandwiched between the light emitting layer and a cathode, a compound represented by the following formula (1): (Cz)p-L-(A)q (1) wherein, Cz represents a substituted or unsubstituted arylcarbazolyl or carbazolylaryl, L represents a single bond or a substituted or unsubstituted arylene, cycloalkylene, or aromatic heterocycle, A represents a substituted or unsubstituted nitrogen-containing 6-membered aromatic heterocycle, and each of p and q independently represents an integer from 1 to 6.
Abstract:
A charge-transporting material contains a compound represented by the following formula (1) in an organic layer, in which the contents of specific halogen-containing compounds are 0.1% or less to the compound represented by formula (1). In formula (1), each of A1 and A2 independently represents N, —CH or —CR; R represents a substituent; L represents a single bond, an arylene group, a cycloalkylene group or an aromatic heterocyclic group; each of R1 to R5 independently represents a substituent; each of n1, n2 and n3 independently represents an integer of 0 to 4; each of n4 and n5 independently represents an integer of 0 to 5; and each of p and q independently represents an integer of 1 to 4.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
In an image pickup apparatus, a visible light cut filter allows infrared components to pass through, and blocks visible light components. A plurality of image pickup devices receive the light transmitted through the visible light cut filter such that a plurality of color components are received separately from each other. The visible light cut filter allows part of the visible light components to transmit such that the visible light component enters at least one of the plurality of image pickup devices.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
An oscillator includes: a plurality of MEMS vibrators formed on a substrate; and an oscillator configuration circuit connected to the plurality of MEMS vibrators, wherein the plurality of MEMS vibrators each have a beam structure, and the respective beam structures are different, whereby their resonant frequencies are different.