Abstract:
A system and process for selecting objects in an ubiquitous computing environment where various electronic devices are controlled by a computer via a network connection and the objects are selected by a user pointing to them with a wireless RF pointer. By a combination of electronic sensors onboard the pointer and external calibrated cameras, a host computer equipped with an RF transceiver decodes the orientation sensor values transmitted to it by the pointer and computes the orientation and 3D position of the pointer. This information, along with a model defining the locations of each object in the environment that is associated with a controllable electronic component, is used to determine what object a user is pointing at so as to select that object for further control actions.
Abstract:
A security system architecture and method of operation that combines a local security network with control panel and sensors, a central monitoring station (CMS), and a separate operator computer server that provides a web portal for both the homeowner and CMS, that maintains a persistent connection between the control panel and CMS allowing failsafe dual-path signaling. This dual-path signaling technique is extended to provide an effective “smash and grab alarm”, and various approaches to dual-path signal management are disclosed including handshaking, persistent domain monitoring, relayed Operator 3-to-CMS signaling, etc. Improved processes for remotely accessing video are also disclosed along with an improved process for remote control panel configuration, and control panel interfacing with home automation appliances.
Abstract:
A security system architecture and method of operation that combines a local security network with control panel and sensors, a central monitoring station (CMS), and a separate operator computer server that provides a web portal for both the homeowner and CMS, that maintains a persistent connection between the control panel and CMS allowing failsafe dual-path signaling. This dual-path signaling technique is extended to provide an effective “smash and grab alarm”, and various approaches to dual-path signal management are disclosed including handshaking, persistent domain monitoring, relayed Operator 3-to-CMS signaling, etc. Improved processes for remotely accessing video are also disclosed along with an improved process for remote control panel configuration, and control panel interfacing with home automation appliances.
Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.
Abstract:
A system and method is disclosed determining caloric burn via an HCI system. Using a capture device which is able to detect the thickness of a user's arms, legs, torso, etc., the system determines a mass for each of a user's body parts. Thereafter, in one example, the system measures caloric burn for a given body part as a function of how far the body part was displaced, a mass of the body part displaced and gravity.
Abstract:
Enclosures with grommetless strain relief are provided, each including a base and a cover. The base has a bottom and four sidewalls arranged to provide an open box-like structure. A first of the sidewalls of the base is configured with a wire routing slot at its perimeter. The cover has a top and four sidewalls arranged to provide an open box-like structure configured to couple with the base, so as to provide a strain relief for an electrical wire passing through the wire routing slot. The wire is pressed against a length of the first sidewall of the base by a first sidewall of the cover. The enclosure may include other features, such as rounded edges in the wire routing path, a wire guide and/or strap to inhibit wire movement between the first sidewalls, and/or one or more locking mechanisms configured to secure the cover to the base.
Abstract:
A computing device receives acceleration information from an accelerometer mechanically coupled to a wireless controller, magnetic bearing information from a magnetometer mechanically coupled to the wireless controller, and rotation information from a gyroscope mechanically coupled to the wireless controller. When the wireless controller is primarily vertical, the computing device determines a rotation angle of the wireless controller by filtering the rotation information using the acceleration information. When the wireless controller is primarily horizontal, the computing device determines the rotation angle of the wireless controller by filtering the rotation information using the magnetic bearing information.
Abstract:
Techniques may comprise identifying surfaces, textures, and object dimensions from unorganized point clouds derived from a capture device, such as a depth sensing device. Employing target digitization may comprise surface extraction, identifying points in a point cloud, labeling surfaces, computing object properties, tracking changes in object properties over time, and increasing confidence in the object boundaries and identity as additional frames are captured. If the point cloud data includes an object, a model of the object may be generated. Feedback of the model associated with a particular object may be generated and provided real time to the user. Further, the model of the object may be tracked in response to any movement of the object in the physical space such that the model may be adjusted to mimic changes or movement of the object, or increase the fidelity of the target's characteristics.
Abstract:
The invention provides methods for assessing one or more predetermined characteristics or properties of a microfluidic droplet within a microfluidic channel, and regulating one or more fluid flow rates within that channel to selectively alter the predetermined microdroplet characteristic or property using a feedback control.