Abstract:
This invention relates generally to computer systems, and more specifically, to a premise monitoring system. In one embodiment, the invention includes operations of receiving one or more signals containing a device identifier and a device condition from one or more remote alarm monitoring systems; retrieving enhanced information based on the device identifier and/or the device condition; determining one or more communication methods and/or communication destinations based on the device identifier and/or the device condition; and dispatching the enhanced information to the one or more communication destinations using the one or more communication methods.
Abstract:
Provided is a remote control method and apparatus in a home network system including multiple home devices. The remote control method includes receiving operation state information from the respective multiple home devices, receiving a control command for operation control of at least one of the multiple home devices from a user device, determining a control target home device based on the control command, sending the control command to the determined control target home device, receiving processing result information corresponding to execution of the control command from the control target home device, and transmitting the processing result information to the user device.
Abstract:
A display apparatus including a display which displays content, a communicator configured to communicate with a remote controller and an external device, and a controller. The controller being configured to, upon receiving a control command from the external device, control operation of the display apparatus based on the received control command, control the received control command to be transmitted to the remote controller, and control the communicator to transmit the received control command to the external device through the remote controller.
Abstract:
A solar photovoltaic monitoring system for monitoring and controlling a solar photovoltaic inverter is provided. The system includes a wireless transceiver coupled to a solar photovoltaic inverter that includes a device monitor for monitoring and controlling the inverter. The device monitor generates monitoring data defining a status of the system and transmits the data by using the transceiver coupled to the inverter. The system also includes a wireless repeater for receiving data from the inverter and retransmitting the data and a transceiver coupled to a gateway capable of communicating the received retransmitted data to a monitoring station. The gateway also transmits control data received from the monitoring station. The repeater receives control data from the gateway and retransmits data to the inverter. The inverter receives the retransmitted control data and controls its operation based on the received data.
Abstract:
A smart home network system includes a number of traditional home devices having wireless communication function, a smart gateway, and a plurality of signal conversion devices. When the smart gateway wants to control a traditional home device, the smart gateway sends a cable control signal to a related signal conversion device in the area where the target traditional home device is placed. The related signal conversion device receives the cable control signals from the smart gateway, and converts the cabled control signal into a wireless control signal conforming to the wireless communication function type of the target tradition home device, then transmits the wireless control signal to the target traditional home device. Therefore, the traditional home devices with wireless communication function can be connected into the system, and be controlled by the smart gateway.
Abstract:
A communication interface and a device control, management and monitoring system are provided to enable the networking of and communication between a multiple devices operating under different protocols. The communication interface may act as a translator or protocol converter that reformats transmissions from one protocol to another based on protocol compatibility between the recipient and transmitting devices. The device control and monitoring system may store predefined rules that are triggered when specified conditions associated with the networked devices are detected. The rules may specify an action to take such as transmitting a discount offer to a user or turning off a light. According to one or more arrangements, the communication interface may act as an intermediary between the networked devices and the device control system so that the device control system is not required to understand or be compatible with the various other protocols used by the networked devices.
Abstract:
A content access device and system may allow portable remote devices to be paired with a variety of different devices, allowing remote control through a network connection. Content access devices may expose application program interfaces, allowing incoming network traffic to control operation of the device much in the same way that a local infrared remote would. Routing content commands through an external application server may also yield other benefits, such as allowing more customized selection of information and advertising content to users based on their viewing history.
Abstract:
A device for receiving a primary remote control signal and sending a secondary remote control signal where the primary remote control signal and the secondary remote control signal have the same signal-format, and where the secondary remote control signal comprises a secondary information value based upon a primary information value which is comprised by the primary remote control signal, is disclosed. The device is thus capable of eavesdropping on signals sent from a remote controller to a controllable device, and send secondary remote control signals which can be read by the controllable device.
Abstract:
An apparatus, system, and method are provided to cause a controlled device and a controlling terminal to operate in collaboration with each other. A server apparatus stores in advance a plurality of sets of collaboration information which causes the controlled device and the controlling terminal to operate in collaboration with each other. The plurality of sets of collaboration information is respectively stored in association with a plurality of controlled apparatuses different from one another in type. When the controlling terminal requests the server apparatus to send the collaboration information designating the type of the controlled device, the server apparatus sends to the controlling terminal the collaboration information corresponding to the type of the controlled device. The controlled device and the controlling terminal operate in collaboration with each other using the collaboration information.
Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.