Abstract:
A method for stretching a carbon nanotube film includes providing one or more carbon nanotube films and one or more elastic supporters, attaching at least one portion of the one or more carbon nanotube films to the one or more elastic supporters, and stretching the elastic supporters.
Abstract:
A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metalized source areas and a metalized gate area, a patterned source connection having a plurality of dimples formed thereon coupling the source lead to the semiconductor die metalized source areas, a patterned gate connection having a dimple formed thereon coupling the gate lead to the semiconductor die metalized gate area, a semiconductor die drain area coupled to the drain lead, and an encapsulant covering at least a portion of the semiconductor die and drain, source and gate leads.
Abstract:
An apparatus includes a linear heater. The linear heater includes a linear supporter, a heating element and at least two electrodes. The heating element is located on the linear supporter and includes a carbon nanotube structure. The at least two electrodes are separately located and electrically connected to the heating element.
Abstract:
A method for making a carbon nanotube film includes the steps of providing an array of carbon nanotubes, treating the array of carbon nanotubes by plasma, and pulling out a carbon nanotube film from the array of carbon nanotubes treated by the plasma.
Abstract:
A clip for a semiconductor device package may include two or more separate electrically conductive fingers electrically connected to each other by one or more electrically conductive bridges. A first end of at least finger is adapted for electrical contact with a lead frame. The bridges are adapted to provide electrical connection to a top semiconductor region of a semiconductor device and may also to provide heat dissipation path when a top surface of the fingers is exposed. A semiconductor device package may include the clip along with a semiconductor device and a lead frame. The semiconductor device may have a first and semiconductor regions on top and bottom surfaces respectively. The clip may be electrically connected to the top semiconductor region at the bridges and electrically connected to the lead frame at a first end of at least one of the fingers.
Abstract:
A composite semiconductor package is disclosed. The package includes a lead frame having first and second die bonding pads, the first and second die bonding pads having a large lateral separation therebetween, a first device bonded to the first die bonding pad, a second device bonded to the second die bonding pad, a plurality of first leads coupled to the first die bonding pad, a plurality of second leads coupled to the second die bonding pad, and an encapsulant covering the lead frame, the first and second devices and at least a portion of the first and second pluralities of leads. The package may be a TSSOP-8 composite package having a common drain MOSFET pair and an IC.
Abstract:
A dual flat non-leaded semiconductor package is disclosed. A method of making a dual flat non-leaded semiconductor package includes forming a leadframe having a die bonding area with an integral drain lead, a gate lead bonding area and a source lead bonding area, the gate lead bonding area and a source lead bonding area being of increased area; bonding a die to the die bonding area; coupling a die source bonding area to the source lead bonding area; coupling a die gate bonding area to the gate lead bonding area; and partially encapsulating the die, the drain lead, the gate lead and the source lead to form the dual flat non-leaded semiconductor package.
Abstract:
A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metalized source areas and a metalized gate area, a patterned source connection having a plurality of dimples formed thereon coupling the source lead to the semiconductor die metalized source areas, a patterned gate connection having a dimple formed thereon coupling the gate lead to the semiconductor die metalized gate area, a semiconductor die drain area coupled to the drain lead, and an encapsulant covering at least a portion of the semiconductor die and drain, source and gate leads.
Abstract:
A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, and a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metalized source contacts. A bridged source plate interconnection has a bridge portion, valley portions disposed on either side of the bridge portion, plane portions disposed on either side of the valley portions and the bridge portion, and a connection portion depending from one of the plane portions, the bridged source plate interconnection connecting the source lead with the plurality of metalized source contacts. The bridge portion is disposed in a plane above the plane of the valley portions while the plane portions are disposed in a plane intermediate the plane of the bridge portion and the plane of the valley portions.
Abstract:
An access point operating in a wireless communication network includes a smart antenna for generating directional antenna beams. A method for operating the access point includes communicating with a client station using a selected directional antenna beam, with the client station initially being in a stationary position. Signal to noise ratios of signals received from the client station within a time interval are measured. At least one variation metric of a mean of the measured signal to noise ratios within the time interval is determined. This at least one determined variation metric is compared to a threshold for determining if the client station is moving.