Abstract:
A microfluidic device having a substrate with an electrically conductive element made using a conductive ink layer underlying a hydrophobic layer.
Abstract:
The invention relates to a droplet actuator device and methods for integrated sample preparation and analysis of a biological sample. A droplet actuator device is provided for conducting droplet operations. The droplet actuator device may include a bottom substrate and a top substrate separated from each other to form a gap therebetween; an arrangement of droplet operations electrodes arranged on one or both of the bottom and/or top substrates for conducting droplet operations thereon; a reagent storage layer comprising one or more compartments bound to the top substrate; and one or more openings arranged to provide a fluidic path from the one or more compartments into the gap, upon breach of a breachable seal separating the one or more compartments and openings.
Abstract:
In one embodiment, a multiplex fluid processing cartridge includes a sample well, a deformable fluid chamber, a mixing well with a mixer disposed therein, a lysis chamber including a lysis mixer, an electrowetting grid for microdroplet manipulation, and electrosensor arrays configured to detect analytes of interest. An instrument for processing the cartridge is configured to receive the cartridge and to selectively apply thermal energy, magnetic force, and electrical connections to one or more discrete locations on the cartridge and is further configured to compress the deformable chamber(s) in a specified sequence.
Abstract:
The invention provides a method of circulating magnetically responsive beads within a droplet in a droplet actuator. The invention also provides methods for splitting droplets. The invention, in one embodiment, makes use of a droplet actuator with top and bottom substrates, a plurality of magnetic fields respectively present proximate the top and bottom substrates, wherein at least one of the magnet fields is selectively alterable, and a plurality of droplet operations electrodes positioned along at least one of the top and bottom surfaces. A droplet is positioned between the top and bottom surfaces and at least one of the magnetic fields is selectively altered.
Abstract:
A method of growing cells on a droplet actuator is provided. The method may include providing a droplet actuator including a cell culture droplet including a cell culture medium and one or more cells; and maintaining the droplet at a temperature suitable for causing the cells to grow in the cell culture medium on the droplet actuator. Related methods, droplet actuators, and systems are also provided.
Abstract:
The present invention relates to droplet-based pyrosequencing including a method of identifying a base at a target position in a sample nucleic acid. The method includes: (a) providing a droplet microactuator including a first droplet including a sample nucleic acid immobilized on a bead; and (b) on the droplet microactuator: (i) contacting the first droplet with one or more reagent droplets to yield a second droplet, wherein the one or more reagent droplets include reagents for extending a double stranded portion of the sample nucleic acid by incorporating a nucleotide at the target position; (ii) splitting the second droplet to yield a third droplet including the bead and a fourth droplet lacking the bead; and (iii) assaying the third droplet to determine whether the nucleotide was incorporated at the target position.
Abstract:
Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.
Abstract:
The invention relates to bead incubating and washing on a droplet actuator. Methods for incubating magnetically responsive beads that are labeled with primary antibody, a sample (i.e., analyte), and secondary reporter antibodies on a magnet, on and off a magnet, and completely off a magnet are provided. Also provided are methods for washing magnetically responsive beads using shape-assisted merging of droplets. Also provided are methods for shape-mediated splitting, transporting, and dispensing of a sample droplet that contains magnetically responsive beads. The apparatuses and methods of the invention provide for rapid time to result and optimum detection of an analyte in an immunoassay.
Abstract:
A method for conducting medium-chain acyl-CoA dehydrogenase (MCAD) and very-long-chain acyl-CoA dehydrogenase (VCAD) enzymatic activity assays is provided. The method may include, but is not limited to, preparing a sample; preparing an enzyme-specific substrate/reagent mixture; mixing an aliquot of the prepared sample with an aliquot of the enzyme-specific substrate/reagent mixture; reading absorbance in the range of about 600 nm; incubating the prepared sample and enzyme-specific substrate/reagent mixture; and reading absorbance in the range of about 600 nm at various time intervals.
Abstract:
A liquid handling system for supplying liquids to a flow cell (FC). The system may include a droplet actuator cartridge, wherein the droplet actuator and a flow cell are fluidly coupled to, or situated within, a droplet operations gap of the droplet actuator.