Abstract:
A simulation device for generating an answer to a question inputted thereto. A communication unit is configured to input a selected question associated with a first criterion and a second criterion. A generating unit is configured to generate a copy of a continuously updated environment model. A generating unit is configured to generate a simulation scenario, depending upon the first criterion. A modifying unit is configured to modify the generated simulation scenario. An applying unit is configured to apply the modified generated simulation scenario to the generated copy of the continuously updated environment model. A simulating unit is configured to perform a simulation process in accordance with the second criterion. An answering unit is configured to answer information, depending upon a result of the simulation process.
Abstract:
A method and a system for determining a terrain parameter relative to a vehicle (100) by registering a first image from the vehicle located at a first point in space, then registering a second image from the vehicle (100) when it is located at a second point in space (O2) . Receiving vehicle movement data which describes at least one of a translation (R) between the first and second points in space (O1; O2), and a rotation (A) between the first and second points in space (O1; O2). A first image velocity vector is determined, which describes a movement of the primary representation of the first terrain point (P1) in the first image to the secondary representation thereof in the second image. A second image velocity vector is determined, which describes a movement of the primary representation of the second terrain point (P2) in the first image to the secondary representation thereof in the second image. A terrain vector is then resolved from a respective relationship expressing each of the first and second image velocity vectors as a function of the translation and the rotation, the terrain vector extending between one of the first and second points in space (O1; O2) and a particular terrain point (T) in proximity of the vehicle (100).
Abstract:
A simulation system including at least one virtual projectile/missile firing device associated to a determined position and having a movable director arranged to direct a virtual projectile/missile towards a target and an image capturer arranged to capture at least one image of a scene in front of the director. The simulation system includes a terrain database with the positions of landmarks marked, a processor arranged to process the image of the scene so as to identify at least one landmark of the terrain database in the image and the processor is further arranged to determine a compass bearing of the director based on at least the position of the virtual projectile/missile and the position of the identified at least one landmark.
Abstract:
A remote weapon station including a weapon support adapted for rotatable motion about a first transverse axis. The weapon support supports a weapon attachment device being rotatable about a second elevation axis. A sight unit is rotatable about a third transverse axis and about, perpendicular to the third transverse axis, a fourth elevation axis, independently of the position or rotation of the weapon support about the first transverse axis and the second elevation axis. The sight unit is mounted between the weapon support and the weapon attachment device.
Abstract:
A method of forming a safe termination operation volume, and an aircraft provided with a system using such a volume to plan a flight route and/or an emergency route. The volume indicates the lowest allowable flight altitude to achieve a glide path of a vehicle to a termination point of an area of interest, wherein non allowable fly zones are taken into consideration by adding flight altitude to come around the non allowable fly zones when calculating the lowest allowable flight altitude.
Abstract:
A method for reducing the amount of ammunition types to be used against a wide set of targets. At least two explosive charges are made use of in cooperation. Each of the explosive charges has changeable characteristics and is arranged to mutually cooperate in different ways depending on the particular changeable characteristics given to the explosive charges in a specific case and the type of target to be combated. An ammunition device admitting a reduction of the amount of ammunition types to be used. At least two cooperating explosive charges are arranged in a row along the direction of movement of the ammunition device when activated. Each of the explosive charges is switchable between at least two operating conditions having different operating characteristics.
Abstract:
A method for generating input information associated with a question to be provided to a simulation device on-board a platform. The question is elected among a plurality of questions. A simulation criterion corresponding to the simulation is determined. A simulation scenario is modified depending upon the question. The input information is generated depending upon the elected question and the simulation criterion.
Abstract:
A connector device comprising including a first connector part operatively connectable to a first external unit and a second connector part operatively connectable to a second external unit. The first connector part is connectable to the second connector part enabling communication between the first and second external units. Each connector part includes a surface in which a plurality of transmitting/receiving areas are formed. The first connector part is connectable to the second connector part via the transmitting/receiving areas. At least the first connector part includes a first processing unit operatively connected to the plurality of transmitting/receiving areas. The processing unit is arranged to detect a first subset of transmitting/receiving areas in communication with a corresponding second subset of receiving/transmitting areas in the second connector part and to control communication between the first and second external units over the first subset of transmitting/receiving areas.
Abstract:
The invention relates to a method for conversion of waveguide modes from a mode of type TM01 to mode of type TE11 for transmission of power within the microwave range. The invention also relates to a mode-converting arrangement and an antenna arrangement with such a mode converting arrangement. The mode-converting arrangement comprises an incoming waveguide (1) for reception of power of the type TM01-an outgoing waveguide (6) for outputting power of mode type TE11 and a waveguide-mode-converting section (2-5) arranged between the incoming and outgoing waveguides. According to the invention, incoming power of mode type TM01 is divided in an input section (2) between two or more waveguides with cross-sections in the shape of circle sectors. Thereafter, the divided power is phase-shifted by the waveguides in a subsequent phase-shift section (4) being designed with cross-sections that are essentially in the shape of circle sectors with different radii, after which the waveguides are changed into a common essentially circular waveguide (6) that emits an outgoing power of mode type TE11. By means of the invention, a relatively simple solution is produced that can cope with high powers.
Abstract:
A system and a method for assisting in planning how to carry out a mission on a plurality of targets with a plurality of resources of different types. Information about the mission, the targets and the resources are received. The system includes a plurality of computing modules arranged in a hierarchical structure comprising at least two levels. The first level includes a plurality of computing modules, each corresponding to one or more resources of a specific type and arranged for producing a cost estimate for performing the mission by means of its corresponding resources based on a mathematical model of the resource and the information about the mission, the targets, and the resources. The second level includes computing modules adapted for receiving the cost estimates from the first level computing modules, and on basis thereof selecting which of the recourses to be used for performing the mission by means of a mathematical optimization method.