Abstract:
To provide an ultrasonic generator capable of detecting any of a state operated without a water load, abnormality of an ultrasonic transducer and abnormality of a cleaning bath. The ultrasonic generator according to the present invention includes a signal source 9 for generating a signal having at least one of frequencies of f1, f2 and f3, a matching circuit 17 for matching the signal generated from the signal source, an ultrasonic transducer 2 to which the signal matched by the matching circuit is input, a detection circuit 10 for detecting the voltage value and current value of the signal input to the ultrasonic transducer, an impedance computing unit 11 for computing the impedance to the signal using the voltage value and current value detected by the detection circuit, and a determination part 13 for determining abnormality of the cleaning bath or the ultrasonic transducer by comparing the impedance to the signal computed by the impedance computing unit with a previously-set threshold for detecting an impedance abnormality.
Abstract:
An apparatus to produce acoustic cavitation by controlling cavitation events in a liquid insonification medium utilizing a waveform to excite a transducer with a series of bipolar inharmonic tone bursts having medium recovery intervals between respective bursts so that the medium repeatedly recovers from cavitation events between bursts. The apparatus may be used to clean a semiconductor wafer, to de-coat a painted surface having, to induce a chemical reaction, and/or to provide recycled paper made from inked paper de-inked by cavitation. Cavitation events are generated using a transducer and a waveform generator, e.g., square wave tone bursts, to excite the transducer with a signal controlled in frequency, burst repetition rate, duty-cycle and/or amplitude, e.g., utilizing bursts having a frequency between 500 KHz and 10 MHz, and a duty cycle between 0.1% and 70%.
Abstract:
An ultrasonic cleaning method in which ultrasonic cleaning of a contamination attached to a surface of an object to be cleaned is performed by directing toward the object to be cleaned, a cleaning liquid to which ultrasonic waves are applied by alternately focusing first ultrasonic waves having a frequency of 1 to 10 MHz and second ultrasonic waves having a frequency equal to or lower than ½ of that of the first ultrasonic waves. A focus position adjustment device is used to adjust the distance of the focus position relative to the surface of the object to be cleaned, and a moving device is used to movie at least one of the ultrasonic wave generation device and a support base for the object so that the effect of the ultrasonic waves generated by the ultrasonic wave generation device on the surface of the object to be cleaned is uniform.
Abstract:
An ultrasonic cleaning apparatus which performs ultrasonic cleaning of a contamination attached to a surface of an object to be cleaned, by using a cleaning liquid to which ultrasonic waves are applied has a cleaning bath pooling the cleaning liquid, a support base on which the object to be cleaned is supported in the cleaning liquid, ultrasonic wave generation device for alternately focusing first ultrasonic waves having a frequency of 1 to 10 MHz and second ultrasonic waves having a frequency equal to or lower than ½ of that of the first ultrasonic waves toward the object to be cleaned, a focus position adjustment device of adjusting the distance between a focus position for the focus and the surface of the object to be cleaned, and moving device of moving at least any one of the ultrasonic wave generation device and the support base so that the effect on the surface of the object to be cleaned of the ultrasonic waves generated by the ultrasonic wave generation device is uniform.
Abstract:
An apparatus to produce acoustic cavitation by controlling cavitation events in a liquid insonification medium utilizing a waveform to excite a transducer with a series of bipolar inharmonic tone bursts having medium recovery intervals between respective bursts so that the medium repeatedly recovers from cavitation events between bursts. The apparatus may be used to clean a semiconductor wafer, to de-coat a painted surface having, to induce a chemical reaction, and/or to provide recycled paper made from inked paper de-inked by cavitation. Cavitation events are generated using a transducer and a waveform generator, e.g., square wave tone bursts, to excite the transducer with a signal controlled in frequency, burst repetition rate, duty-cycle and/or amplitude, e.g., utilizing bursts having a frequency between 500 KHz and 10 MHz, and a duty cycle between 0.1% and 70%.
Abstract:
The invention utilizes single and multiple frequency ultrasound generators driving single and multiple frequency resonant and harmonic transducer arrays at frequencies into the megasonic range. Generator signals that increase cavitation efficiency improve the performance of the cleaning, microbiological inactivation, sonochemistry or processing systems.
Abstract:
An apparatus to produce acoustic cavitation by controlling cavitation events in a liquid insonification medium utilizing a waveform to excite a transducer with a series of bipolar inharmonic tone bursts having medium recovery intervals between respective bursts so that the medium repeatedly recovers from cavitation events between bursts. The apparatus may be used to clean a semiconductor wafer, to de-coat a painted surface having, to induce a chemical reaction, and/or to provide recycled paper made from inked paper de-inked by cavitation. Cavitation events are generated using a transducer and a waveform generator, e.g., square wave tone bursts, to excite the transducer with a signal controlled in frequency, burst repetition rate, duty-cycle and/or amplitude, e.g., utilizing bursts having a frequency between 500 KHz and 10 MHz, and a duty cycle between 0.1% and 70%.
Abstract:
A system and method of cleaning a substrate includes a megasonic chamber that includes a transducer and a substrate. The transducer is being oriented toward the substrate. A variable distance d separates the transducer and the substrate. The system also includes a dynamically adjustable RF generator that has an output coupled to the transducer.
Abstract:
The invention provides systems, methods and apparatus for processing delicate parts within a process tank such as an ultrasonic tank. Typically, one or more transducers connect to the tank and respond to drive signals from a generator to produce ultrasound within process liquid within the tank. Specific features of the invention include: (1) a power up-sweep ultrasonic system for moving contaminants upwards within the tank by sweeping transducer drive signals from an upper frequency to a lower frequency without sweeping from the lower frequency to the upper frequency; (2) a multi-generator system for producing ultrasound at selected different frequencies within the tank by switching a common transducer bank to one of the generators in response to remote relays initiated by the user; (3) a probe sensing system for sensing process conditions within the tank including an enclosure for housing a sample liquid and one or more sensing transducers within the sample liquid, the transducers generating signals indicative of characteristics of the sample liquid, a subsystem analyzing the signals in feedback with the generator to modify process conditions; (4) variable voltage ultrasonic generator systems to accommodate varying world-wide voltage supplies; (5) a laminar process tank for efficiently pushing contaminants upwards in a tank; (6) a quick dump rinse tank including a pressure cavity to accelerate dumping processes; (7) an ultrasonic generating unit formed of a printed circuit board (PCB) and multiple transducers within the PCB; (8) an AC power system to produce an AC voltage at frequency f that is impressed across a capacitive element; and (9) various configurations of transducers, including acid-safe transducers, double-compression transducers, and transducers with increased reliability.
Abstract:
A vibration detecting apparatus includes a bobbin having a moving path of desired length in an inner periphery of the bobbin; a core movable along the moving path in the inner periphery of the bobbin by vibration applied from exterior or vibration applied to the bobbin; and a coil wound on an outer periphery of the bobbin, the inductance of which being changed in accordance with the shift of the core.