Abstract:
A method and process for at least partially forming a medical device that is at least partially formed of a novel metal alloy which improves the physical properties of the medical device.
Abstract:
The present invention includes particle compositions and methods of fabrication that prevent agglomeration, thereby maintaining particle size and/or shape. Particles of the present invention were prepared after embedding chemically disordered metal-containing particles in at least one salt to form a dispersion. The dispersion of particles in salt was treated to temperatures of at least about 500 degrees Centigrade for several hours. Particles were easily recovered from the dispersion and did not agglomerate. The particles were also absent contaminating salts after performing simple washing and/or rinsing steps. Structural, compositional and/or magnetic characterizations of the metal-containing particles confirmed that they had not agglomerated. When particles with an fcc structure formed a dispersion with at least one salt, the method yielded the formation of particles having an fct structure with high magnetic anisotropy and without a substantial change in size and/or shape. When desired, however, particles shape and/or size may be changed.
Abstract:
The invention relates to a process for producing a corrosion-resistant blasting agent (>60 HRC) with sharp edges based on an Fe—Cr—C alloy. A granulate consisting of an iron-chromium-carbon alloy is hardened in said process to >60 HRC by subjecting it to a heat treatment at above 900° Celsius under a reducing atmosphere. An oxide-free, hard material is obtained in this way that can be crushed into grains with sharp edges. The result is a blasting agent with excellent properties for the surface treatment of workpieces consisting of corrosion-resistant materials such as, for example stainless steel, nonferrous metals and natural stone.
Abstract:
A tantalum-titanium alloy powder that is highly spherical is described. The alloy powder can be useful in additive manufacturing and other uses. Methods to make the alloy powder are further described as well as methods to utilize the alloy powder in additive manufacturing processes. Resulting products and articles using the alloy powder are further described.
Abstract:
A powder production method includes providing an elongated workpiece and repeatedly contacting an outer surface of the elongated workpiece with a reciprocating cutter according to a predetermined at least one frequency to produce a powder. The powder includes a plurality of particles, wherein at least 95% of the produced particles have a diameter or maximum dimension ranging from about 10 μm to about 200 μm. A system for producing powders having a plurality of particles including a cutter and at least one controller is also provided herein.
Abstract:
Described herein are methods and systems for printing a three-dimensional object. In an example, a method for printing a three-dimensional object can comprise: (i) a metallic build material being applied; (ii) a binder fluid being applied on at least a portion of the metallic build material; (iii) the selectively applied binder fluid can be flash fused to bind the metallic build material and the selectively applied binder fluid by application of an energy flux having an energy density of from about 0.5 J/cm2 to about 20 J/cm2 for less than about 1 second. In the example, (i), (ii), and (iii) can be repeated at least one time to form the three-dimensional object. The binder fluid can comprise a liquid vehicle and polymer particles dispersed in the liquid vehicle
Abstract:
Textured particles and methods of making the same. A textured particle includes an inner core and a spherical solid outer shell including an outer surface. The inner core is inside the outer shell. The outer surface includes a first tier texture including a first metal, wherein the first metal is greater than 50 atomic % of a total atomic content of all metals in the first tier texture; a second tier texture including the second metal, wherein the second metal is greater than 50 atomic % of a total atomic content of all metals in the second tier texture; and a third tier texture including the third metal, wherein the third metal is greater than 50 atomic % of a total atomic content of all metals in the third tier texture. The first metal, second metal, and third metals are different metals.
Abstract:
The present invention provides compositions and methods of making bimetallic metal alloys of composition for example, Rh/Pd; Rh/Pt; Rh/Ag; Rh/Au; Rh/Ru; Rh/Co; Rh/Ir; Rh/Ni; Ir/Pd; Ir/Pt; Ir/Ag; Ir/Au; Pd/Ni; Pd/Pt; Pd/Ag; Pd/Au; Pt/Ni; Pt/Ag; Pt/Au; Ni/Ag; Ni/Au; or Ag/Au prepared using microwave irradiation.
Abstract:
Methods are provided for producing alloy forms from alloys containing one or more extremely reactive elements and for fabricating a component therefrom. The fabricating method comprises substantially removing a reactive gas from the fabrication environment. An alloy form of the alloy is formed. The alloy form is formed by melting the alloy or by melting one or more base elements of the alloy to produce a molten liquid and introducing the one or more extremely reactive elements into the molten liquid. The molten alloy is shaped into the alloy form. The component is formed from the alloy form. If the one or more extremely reactive elements are introduced into the molten liquid, such introduction occurs just prior to the shaping step.