Abstract:
A method for assigning hall calls to a plurality of elevator cars on the basis of the estimating the time of arrival (ETA) of each elevator car at the floor of the hall call to be assigned. A new hall call is assigned to the car having the lowest ETA. A previously assigned hall call is reassigned to a car having a lower ETA than the car presently assigned to serve the call when the lower ETA is lower by a value T. The average call waiting time (AWT) is calculated using a selected period of time to tabulate the number of calls and cumulative call waiting time, and this calculated value is compared with the desired AWT for the elevator system. The value of T is changed when the calculated and desired values of ETA have a predetermined relationship.
Abstract:
An elevator system, and method of operating same, having a plurality of elevator cars for serving hall calls registered from the floors of a building. All of the up and down service directions from the floors are continuously assigned to the elevator cars, whether or not they have an active registered hall call associated therewith, with the assignments being made according to predetermined averages which uniformly spread the actual and prospective work loads among the elevator cars. The hall calls are timed. A timed-out call, i.e., a call registered for a predetermined period of time, is given preferential treatment, without significantly disturbing service to other registered hall calls, by assigning the floor and service direction associated with the timed-out call to an additional car which is not already assigned to a timed-out call. The additional car is selected on the basis of its having the lightest work load schedule of all of the elevator cars conditioned to serve the timed-out call.
Abstract:
The present invention relates to an apparatus for operating an elevator for an assignment of a plurality of cage calls for serving a plurality of floors on the basis of the cage calls under a group supervision which has a plurality of destination buttons provided in the halls of a plurality of floors, to be operated for registering the calls in the halls and the calls for the destination from the hall; assignment means receiving a signal generated by the operation of said destination button for assigning the call in the hall and the call for the destination for any one of said plurality of cages; and registering means for registering the call of the destination floor as a cage call and differentiating the registering time of the cage call according to the running state of the plurality of cages.
Abstract:
An elevator car group control system for controlling a plurality of elevator cars arranged for parallel operation for serving a plurality of service floor landings of a building, comprising means for selecting suitable ones of the cars for serving hall calls, and means for forecasting the length of time required for each of the selected cars to arrive at each of the allotted hall call originating floors and displaying the forecast waiting time on display means disposed at the landing of each of the floors. In the invention, the serving car selecting means comprises means for detecting for each car the number of floors subject to change in forecast waiting time displayed at each of the already allotted floors when a new hall is originated from one of the floors, and means for preferentially selecting the car detected to provide a smaller number of floors subject to such change than the others. That is, in response to the origination of a new hall call, the number of floors subject to change in already displayed forecast waiting time due to the allotment of the new hall call is detected for each of the cars, and the car providing a smaller number of floors subject to such change than the others is preferentially selected to respond to the new hall call.
Abstract:
A method for controlling an elevator where an elevator is allocated for the use of a passenger in a first optimization phase in such a way that a first cost function is minimized, a second optimization phase is performed, in which the route of the allocated elevator is optimized in such a way that a second cost function is minimized.
Abstract:
A method schedules elevator cars in a group elevator system in a building by first generating a set of probability distributions for arrivals of future passengers at any floor of the building, wherein the set of probability distributions are characterized by probabilistic variables that specify arrival information of the future passengers, wherein the arrival information includes a probability of service requests by the future passengers and a probability of possible times of the service requests. A schedule for the elevator cars is based on the set of probabilistic distribution. Then, the schedule is provided to a controller of the group elevator system to move the elevator cars according to the schedule.
Abstract:
A method for allocating elevators in an elevator system, the elevator system including a group control system responsive to hall calls received from call input devices, and elevator-specific elevator controllers configured to control elevators based on commands issued by the group control system, wherein the method including generating a number of route alternatives based on calls active; calculating, by the elevator controllers, elevator-specific cost terms associated with the route alternatives; transmitting, by the elevator controllers, the cost terms to the group control system; and allocating, by the group control system, the hall calls to the elevators according to the route alternative giving the lowest allocation cost.
Abstract:
A method of allocating calls of a lift installation with at least one lift and at least one car per lift to move passengers in a journey from at least one input floor to at least one destination floor, a system for executing the method and a computer readable memory with instructions for executing the method. The method includes receiving input calls from passengers travelling from an input floor to a destination floor, each call identifying at least one floor as an input floor or a destination floor. A start zone with identified input floors and a destination zone with identified destination floors are determined from the input calls and destination calls. Each identified floor within a corresponding zone is considered using at least one selection criterion and a stopping floor is selected which satisfies the criterion. The car is caused to stop at fewer than all the identified input floors and identified destination floors during the journey.
Abstract:
An exemplary method of controlling an elevator system includes determining that a new passenger requests elevator service from a departure floor to a destination floor. Any candidate elevator cars are ranked. A number of stops for each assigned passenger for a ranked candidate elevator car is determined if the new passenger were assigned to that car. A determination is made whether any ranked candidate elevator car is a qualified car that can accept the new passenger and limit a number of stops for each passenger assigned to that car to a desired maximum number of stops. The new passenger is assigned to a qualified car that has a most favorable ranking of any qualified cars.
Abstract:
An elevator dispatching system includes a plurality of elevator groups, each of the plurality of elevator groups including a group controller and a plurality of elevator cars, each of the plurality of elevator groups serving a respective set of floors; and a redirector configured to receive a service request including a destination floor, and, in the event more than one elevator group serves the destination floor, communicate the service request to the group controllers of the more than one elevator groups, wherein the respective group controllers of the more than one elevator groups are configured to each determine a respective group score, and communicate the respective group score to the redirector, and the redirector is further configured to determine the best group based on the respective group scores.