Abstract:
An elevator control system, an elevator system, and a control method therefor. The elevator control system includes: a data collection unit configured to receive a call request signal from a machine passenger at each landing, and receive information about the machine to ride the elevator sent by the machine passenger; and a control unit configured to determine whether to accept the call request from the machine passenger based on elevator operating condition and the information about the machine to ride the elevator, and send information about the rules of riding the elevator to the machine passenger after accepting its call request.
Abstract:
An illustrative example elevator system includes a plurality of elevator cars. A dispatch controller assigns a first one of the elevator cars to travel to a landing in response to a first request for elevator service at that landing. At least one call button is operative to place a second request while the first one of the elevator cars is situated at the landing in response to the first request. The dispatch controller assigns a second one of the elevator cars to travel to the landing in response to the second request.
Abstract:
An illustrative example elevator system includes a plurality of elevator cars. A dispatch controller assigns a first one of the elevator cars to travel to a landing in response to a first request for elevator service at that landing. At least one call button is operative to place a second request while the first one of the elevator cars is situated at the landing in response to the first request. The dispatch controller assigns a second one of the elevator cars to travel to the landing in response to the second request.
Abstract:
An aspect includes capturing crowd data associated with a lobby area of an elevator system. A dispatching schedule of one or more elevator cars of the elevator system is adjusted based on the crowd data. A notification of the adjustment to the dispatching schedule is output.
Abstract:
A conveyance system including a system interface having a camera to generate an image including an input fingerprint and an input finger presentation; a dispatch system including a fingerprint recognition unit and a profile unit, the fingerprint recognition unit comparing the input fingerprint to a reference fingerprint; the dispatch system accessing a user profile when the input fingerprint matches the reference fingerprint; the dispatch system comparing the input finger presentation to a reference finger presentation in the user profile; and the dispatch system retrieving a destination from the user profile when the input finger presentation matches the reference finger presentation.
Abstract:
The invention relates to a method and apparatus. In the method a determining a first position of a user of a mobile node is determined at a first time instant. A second position of the user of the mobile node is determined at a second time instant. A time difference is determined between the first time instant and the second time instant. A walking speed of the user is determined using the time difference, the first position and the second position. A third position of the user of the mobile node is determined. A walking time required for the user to reach at least one elevator is determined from the third position based on the walking speed of the user. An elevator call and the walking time are transmitted to an elevator call control node.
Abstract:
A method of allocating calls of a lift installation with at least one lift and at least one car per lift to move passengers in a journey from at least one input floor to at least one destination floor, a system for executing the method and a computer readable memory with instructions for executing the method. The method includes receiving input calls from passengers travelling from an input floor to a destination floor, each call identifying at least one floor as an input floor or a destination floor. A start zone with identified input floors and a destination zone with identified destination floors are determined from the input calls and destination calls. Each identified floor within a corresponding zone is considered using at least one selection criterion and a stopping floor is selected which satisfies the criterion. The car is caused to stop at fewer than all the identified input floors and identified destination floors during the journey.
Abstract:
According to one embodiment, a response time calculation unit calculates a response time of each of the cars required when the car stop call is assigned to the car. An assignment control unit assigns the car stop call to the optimum car, based on the response time of each of the cars. A car load calculation unit calculates a load value of each car at the time when each car starts from a registration floor of the car stop call after responding to the call. A boarding possibility determination unit determines, for each car, whether the user can get on the car or not, by comparing the load value with a preset capacity value. A registration control unit performs control to assign the car stop call, including a second and later responses to the registration floor of the car stop call, based on a determination result of the boarding possibility.
Abstract:
A car-based running power computing mechanism computes running power values of each car in both cases including cases before and after a newly generated hall call is assigned. A car-based regenerative power computing mechanism computes regenerative power values of each car in the both cases. A car-based future running power computing mechanism computes future running power values of each car in the both cases. A car-based future regenerative power computing mechanism computes future regenerative power values of each car in the both cases. A car-based assigned total evaluation index computing mechanism obtains an in-travel power consumption value and an in-future-travel power consumption value based on the running power values, regenerative power values, future running power values, future regenerative power values and the like, to thereby compute assigned total evaluation indices of each car in the both cases. An assigned car deciding mechanism decides an assigned car based on the assigned total evaluation indices.
Abstract:
A solution for the allocation of destination calls in an elevator system includes one or more single-deck elevators and one or more multi-deck elevators, in which system the passenger enters a destination call via a destination call device. The destination call entered by the passenger is received, an elevator type to serve the destination call is selected on the basis of an elevator type selection criterion, and the destination call is allocated to an elevator consistent with the elevator type thus selected.