Abstract:
A method for producing ozone-water includes steps of providing a cathode and an anode so as to interpose a solid polymer film therebetween, and electrolyzing water. A conductive diamond having one of a porous structure and a mesh structure is used as the anode. Ozone-water of an intermediate to high temperature is produced by electrolyzing water of an intermediate to high temperature.
Abstract:
A cell design for systems of mediated electrochemical oxidation (MEO) of materials includes inactive surface coatings, such as polyvinylidene fluoride, polypropylene, ethylene-chlorotrifluoroethylene and polytetrafluoroethylene polymers or a glass glaze or metallic oxide, on all interior surfaces of the electrochemical cell to prevent . A further cell design for systems of mediated electrochemical oxidation (MEO) included conduits for connecting plural catholyte chambers or for connecting plural anolyte chambers which are embedded within walls of a molded unibody constructed box and slots for parallel arrangement of membranes and porous electrodes.
Abstract:
The commercial unipolar activation of water to disinfect raw water supply from rivers or wells, seawater, or waste water from sewage, animal waste, processing plant waste, cooling tower water, swimming pool and spa water, ship ballast water and similar polluted waters. Disinfection is accomplished by hydrogen peroxide and ozone including biocides from chlorine and sulphur compounds in the water that are produced during the electrolytic unipolar activation of the water. Unipolar activation can also be used to perform chemical reactions such as in the activation of seawater. This invention can also produce alkaline water that is beneficial for health.
Abstract:
Electrochemical apparatus and processes for the point-of-use production of cleansing, sanitizing, and antimicrobial agents, such as sodium hypochlorite (NaOCl) or hypochlorous acid (HOCl). The processes may be used to produce NaOCl from seawater, low purity un-softened or NaCl-based salt solutions. HOCl may be produced from HCl solutions and water. NaOCl is produced using a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. HOCl is produced using an anion conductive membrane in an electrolytic cell. The cleansing, sanitizing, and antimicrobial agent may be generated on demand and used in household, industrial, and water treatment applications.
Abstract:
A system and method is disclosed for chlorine generation and distribution for the treatment of a pool, spa, body of water, or other water system.
Abstract:
The commercial unipolar activation of water to disinfect raw water supply from rivers or wells, seawater, or waste water from sewage, animal waste, processing plant waste, cooling tower water, swimming pool and spa water, ship ballast water and similar polluted waters. Disinfection is accomplished by hydrogen peroxide and ozone including biocides from chlorine and sulphur compounds in the water that are produced during the electrolytic unipolar activation of the water. Unipolar activation can also be used to perform chemical reactions such as in the activation of seawater. This invention can also produce alkaline water that is beneficial for health.
Abstract:
An apparatus for rinsing liquid medium is described, the apparatus is an electrochemical cell comprising an anode with a precious metal and at least one cathode made of a non-metallic support material in the form of fibre positioned to form a mesh or a felted mat. The support material of the cathode is treated with a metal. When the electrochemical cell is in function, compounds and/or particles of a liquid to treat are deposited on the mat(s) functioning as the cathodes. The cathodes are easily replaced e.g. when no more compounds can be deposited on the mat. Pure samples of metals can be obtained by burning away the support material of the cathodes. The electrochemical cell is especially suitable to treat water including process water, waste water, and ground water.
Abstract:
An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.
Abstract:
The present invention provides an electrolytic cell, which can efficiently produce charged water having an excellent performance of improving surface cleaning or treatment of an object, e.g., semiconductor, glass, or resin and of cleaning and sterilizing medical device. The electrolytic cell of the present invention is for producing charged anode water suitable for surface cleaning or treatment, including the cathode chamber 41 and anode chamber 50, fluorinated cation-exchange membrane 46 provided to separate these chambers from each other, cathode 44 closely attach to the cation-exchange membrane 45 on the side facing the cathode chamber 41, and middle chamber 48 filled with the cation-exchange resin 46, provided on the other side of the cation-exchange membrane 46, the cation-exchange resin 46 being arranged in such a way to come into contact with the fluorinated cation-exchange membrane 45, wherein the feed water is passed into the middle chamber 48 and passed thorough the anode chamber 50 to be recovered as the charged anode water.
Abstract:
A unipolar liquid activation apparatus with an anode cell (40), a cathode cell (41), and a direct current power supply (43), the anode cell having an anode (46), a liquid inlet (50) and an anolyte outlet (51), the cathode cell having a cathode (47), a liquid inlet (52) and a catholyte outlet (53), means to electrically connect the anode and cathode respectively to the direct current power supply. The cells can also include connected solution electrodes (44, 49). Alternatively the anode and cathode can be compound electrodes (81, 83) with means to electrically connect the inner anode electrode and the inner cathode electrode. The anode cell and cathode cell may be adjacent to each other and electrically connected by an electronic membrane (104) in contact respectively with the anode and cathode and allowing flow of electrons only from the cathode to the anode. The unipolar activation apparatus may also be an anode (141) and a cathode (142) electrically isolated from each other but connected to a DC power source.