Abstract:
An electrodialysis unit 8 for treating water, such as a treatment in order to kill microorganisms, comprises: a membrane cell, an anode flow path 52 for directing a portion of an incoming water flow to an anode side of the membrane cell, a cathode flow path 50 for directing a portion of an incoming water flow to a cathode side of the membrane cell, a temperature monitoring device 9a for monitoring the temperature of the water and a heater 9b for increasing the temperature of the water in the anode flow path 52 before it reaches the membrane cell, wherein the heater 9b is arranged to operate to increase the temperature of the water in the anode flow path 52 when the original water temperature is below a predetermined level. A membrane 71 is located between the electrodes (cathodes 68 and anode 70).
Abstract:
Apparatus for sewage treatment, comprising: at least one tank (13), at least one inlet branch (14) to the tank (13), at least one outlet branch (15) from the tank (13), at least one microwave generator (9a) able to subject the sewage present internally of the tank (13) to at least one temperature raising treatment, at least a cooling circuit (19) of the microwave generator (9a), at least one blowing device (9b) connected to the tank (13). Blowing device (9b) is connected to an outlet (26) of the cooling circuit (19) and sending the heated gases arriving therefrom into the tank (13).
Abstract:
Exemplary electrolytic methods are disclosed relating to preparation of useful products, e.g., disinfectants, from aqueous solutions of electrolytes. Disinfectant production with a capacity of a single electrolyzer may amount to 1200 liters per hour and up to 600 grams of active chlorine per hour by utilizing 3-7 gram sodium chloride (NaCl) for the production of 1 gram of active chlorine on the basis of a reliable and safe hydraulic structure. A fresh water supply may initially be directed into an internal tubular cathode chamber for cathode cooling purposes, before the participation in final disinfectant production process. A coolable cathode may increase the hold-up time of the electrolyte in the electrode chamber without application of circulation circuits, improving significantly the efficiency of sodium chloride utilization. The simplicity of the method makes it possible to increase both the productivity of a single electrolyzer and the efficiency of the process.
Abstract:
The invention provides a heater arrangement and method for heating a liquid, wherein the heater comprises a heating element, wherein the method comprises (i) heating the liquid in the heater wherein the heating element is in contact with the liquid, and (ii) applying a potential difference between the heating element and a counter electrode, wherein the potential difference has an AC component whereby the potential difference varies with an AC frequency in the range of 0.01-100 Hz and wherein the potential difference is applied with a cycle time, wherein the potential difference has a sign during a first part of the cycle time that is opposite of the sign of the potential difference during a second part of the cycle time, and wherein during one or more of the first part of the cycle time and the second part of the cycle time, the potential difference temporarily changes sign.
Abstract:
A liquid treatment apparatus comprises a liquid flow channel (26) configured to receive and channel liquid; and plasma generation means. The plasma generation means is arranged and configured to generate a plasma field in the gas phase above the liquid flow channel (26) to contact the surface of the liquid flowing therethrough to act on the liquid to cause impurities dissolved therein to form solid insoluble material which may be removed from the liquid by conventional filtration methods. The plasma generation means comprises at least one electrode (40) defining an anode, and at least one cathode (24) element spaced from the at least one electrode (40). The at least one electrode is located such that when liquid flows through the flow channel (26) the at least one electrode (40) is spaced above the surface of the liquid in the gaseous phase and the at least one cathode (24) is located within the flow channel (26) and arranged such that when liquid flows through the flow channel (26) it is at least partially submerged beneath the surface of the liquid, such that the plasma field is generated in the gas phase and extends to and contacts the surface of the liquid.
Abstract:
There is provided a system and method for regulating conductivity of cooling water in a recirculation route of a cooling water recirculation system through which the cooling water is circulated for removing scale from the cooling water. The system comprises an electrolytic device connectable to the cooling water recirculation system for performing electrolysis on the cooling water and a controller. The controller is for controlling the electrolysis of the cooling water in an electrolytic chamber of the electrolytic device for depositing ions in the cooling water as scale on the surface of one of a pair of electrodes of the electrolytic device and for dislodging the scale deposited thereon, monitoring a value of voltage and a value of current between the pair of electrodes, calculating a conductivity of the cooling water based on the monitored values of voltage and current, and regulating an amount of discharge of the cooling water from the electrolytic chamber based on the calculated conductivity of the cooling water, whereby the scale is removed with the cooling water that is being discharged and the cooling water that is being electrolyzed is directed back to the recirculation route of the cooling water recirculation system for circulation.
Abstract:
The present disclosure relates to a sterilized water creating cartridge having an inlet and an outlet in one direction for producing sterilized water by underwater-discharging water supplied from an inlet and discharging the sterilizes water to an outlet, the cartridge including a sterilized water producing unit including a negative electrode plate having an electrode connector for underwater-discharging the water, and a positive electrode plate, and a case accommodating the sterilized water producing unit thereinside, formed with an electrode connector through hole passing the electrode connector, and having an inlet and an outlet on a surface of one direction toward both sides of the sterilized water producing unit.
Abstract:
The present invention relates to the chemical engineering for getting useful products from aqueous solution of electrolytes with various concentration by electrolytic method and it can be used for the production of disinfectants widely utilized in medicine, biology, and ecology.This invention solves a task of disinfectant production with the capacity of a single electrolyser amounting to 1200 litres per hour and up to 600 grams of active chlorine per hour by utilizing 3-7 gram sodium chloride (NaCl) for the production of 1 gram of active chlorine on the basis of a reliable and safe hydraulic structure. The main condition for the effective solving of the task is the initial directing of fresh water supply into the internal tubular cathode chamber for the cathode cooling purposes, before the participation in final disinfectant production process. A coolable cathode enables to increase the hold-up time of the electrolyte in the electrode chamber without application of circulation circuits improving significantly the efficiency of sodium chloride utilization. The simplicity of the method makes it possible to increase both the productivity of a single electrolyser and the efficiency of the process.
Abstract:
An electrodialysis unit for treating water comprises a membrane cell, a temperature monitoring device for monitoring the temperature of incoming water and a heater for increasing the temperature of the incoming water before it reaches the membrane cell; wherein the heater is arranged to operate to increase the temperature of the incoming water when the original water temperature is below a predetermined level.
Abstract:
A sanitizing system is provided for use in a bathing unit system including a receptacle for holding water in which a halide salt has been dissolved and a circulating system for removing and returning water from and to the receptacle. The sanitizing system includes a sanitizing device having a housing configured to be positioned in fluid communication with the circulation system and an electrolytic cell positioned within the housing so that when power is applied to the electrolytic cell, the halide salt dissolved in water flowing through the housing is converted to an amount of free halogen. A controller controls an amount of power supplied to the electrolytic cell so as to control the amount of free halogen being generated. The amount of power supplied may be adjusted, for example, based on an amount of usage of the bathing unit system, a usage of a circulation pump and/or based on a water temperature. A user control interface for the sanitizing device is also provided.