Abstract:
Process for the impregnation of a polymer substrate including at least one polymer, which comprises putting said polymer substrate in contact with at least one aqueous emulsion, preferably an aqueous microemulsion, including at least one organic additive. The impregnated polymer substrate obtained from said process can be advantageously used for obtaining polymer end-products having improved aesthetic characteristics (for example, impregnation with at least one dye) or stability characteristics (for example, impregnation with at least one stabilizer), which can be used in various fields such as, for example, the optical field (e.g., advanced optical components, laser applications), the medical field (e.g., the release of pharmaceutical substances), the agricultural field (e.g., release of pesticides), fragrances (e.g., release of fragrances). More specifically, said polymer substrate can be used in luminescent solar concentrators (LSCs) which, in their turn, can be advantageously used together, for example, with photovoltaic cells (or solar cells), or photoelectrolytic cells, in solar devices (i.e. devices for exploiting solar energy). Furthermore, said luminescent solar concentrators (LSCs) can be advantageously used together, for example, with photovoltaic cells (or solar cells), in photovoltaic windows.
Abstract:
A method includes contact printing an active composition onto a surface of a release substrate to form a printed surface. The active composition spontaneously dewets the surface of the release substrate to form active deposits on the surface of the release substrate. The active composition comprises an active agent dissolved or dispersed in an aqueous liquid vehicle. A pressure-sensitive adhesive layer is disposed on the printed surface.
Abstract:
The present invention relates to a polymer composition having improved scratch resistance properties, the composition comprising (i) one or more polymers with a glass transition temperature (Tg) of at least 25° C., and (ii) solid particulate material having a surface modified with an organic modifier of formula (I), an organic modifier of formula (I) being the only organic modifier used to modify a surface of the solid particulate material, wherein the solid particulate material is distributed at least throughout a surface layer of the one or more polymers, and wherein the improved scratch resistance is relative to that of the one or more polymers absent the distributed particulate material, (I) where R is selected from a quaternary ammonium cation, a quaternary phosphonium cation, and imidazolium cation and a pyridinium cation; x is an integer ranging from 1-5; Ry is selected from OH, C(O)OH, NH2, SH and CH3; and Z is a counter anion.
Abstract:
Disclosed are the nanoparticle and the method for the same, and the preparing method includes steps of mixing polyethylenimine (PEI) with the poly(acrylic acid)-bound iron oxide (PAAIO) to form a PEI-PAAIO polyelectrolyte complex (PEC) and mixing the PEI-PAAIO PEC with genetic material such as plasmid DNA to form the PEI-PAAIO/pDNA magnetic nanoparticle. The PEI-PAAIO/pDNA magnetoplex is highly water dispersible and suitable for long term storage, shows superparamagnetism, low cytotoxicity, high stability and nice transfection efficiency, and thus the PEI-PAAIO PEC can replace PEI as a non-viral gene vector.
Abstract:
The deposition of graphene is accomplished by various techniques that result in a change of the graphene's solubility in the liquid medium. The solubility change enables the deposition of the graphene onto the substrate. Once the graphene is deposited onto the substrate, the at least partially coated substrate may be separated from the liquid medium. The substrates may then serve as a carrier to deliver the graphene to a desired application.
Abstract:
The present invention provides for a natural, non-toxic, environmentally friendly, “green” mineral based composition that produces ions and emits far infrared heat and the composition comprises tourmaline microcrystals and at least one activating element.
Abstract:
Polymers are infused with carbonates, such as alkali metal or alkaline earth metal salts of carbonate, bicarbonate and sesquicarbonate, alone or in combination. The carbonates are soluble, soft, and have been infused within the polymeric material in a sufficient amount to provide an alkaline aqueous environment to inhibit microbes when the polymeric material is contacted with water.
Abstract:
The present invention generally relates to a process for making non-halogenated flame retardant polymeric composites with superabsorbent polymer coated nanoparticles to provide excellent flame retardant property, low toxicity and high loading efficiency. The flame retardant polymeric composites can be used as flame retarding foams, insulation sheeting materials or other composite materials.
Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
A composite article includes a core layer and an upper layer overlying the core layer. The upper layer is made of perfluoroalkoxy polymer (PFA) and a photocatalytic material (PM), wherein the PM defines at least about 25% of a total area of an exterior surface of the upper layer.