Abstract:
Pigmented high solid coating compositions are produced with reduced viscosities by the addition of at least one silane and at least one titanate.
Abstract:
High solids coating compositions which comprise the reaction product of an aliphatic diol having a chain length between hydroxyls of greater than C.sub.10 and a reactant selected from the class consisting of lactones, epoxides and mixtures thereof are disclosed. The reaction products along with a suitable curing agent may be used as the principal resinous binders in the coating composition or may be used as reactive diluents.
Abstract:
Coating compositions comprising a polymeric polyol with a polyester crosslinking agent having at least two gamma and/or delta-hydroxyester groups per molecule are disclosed. The compositions, when applied to a substrate and cured in the presence of a transesterification catalyst, give solvent-resistant coatings.
Abstract:
A four-component composition is disclosed comprising 100 parts of a non-aminoplast hydroxyl-bearing polymer; about 5-100 parts of a (poly)glycol monoether having an atmospheric boiling point of about 300.degree. C. or greater; an aminoplast or phenolic resin capable of curing the hydroxyl-bearing polymer and a strong acid catalyst for the reaction between the first and third components. Optionally, a pigment may be added to the composition.
Abstract:
A fast curing, high solids coating composition that is adapted for use as an automotive topcoat and which upon curing forms a hard, glossy, durable coating exhibiting excellent resistance to solvents and water. The coating composition contains greater than about 60 percent by weight of nonvolatile solids and, exclusive of pigments, solvents and other nonreactive components, consists essentially of:(A) a polyepoxide resin having a number average molecular weight (M.sub.n) of between about 140 and about 3,000;(B) a reactive catalyst comprising at least one hydroxy functional organophosphate ester selected from certain mono- and diesters of phosphoric acid;(C) an amino resin crosslinking agent; and(D) optionally, a hydroxy functional additive.The hydroxy functional organophosphate ester is included in the composition in an amount sufficient to provide between about 0.67 and about 1.4 equivalents of acid functionality for each equivalent of epoxy functionality in the polyepoxide resin and the amine-aldehyde crosslinking agent is included in the composition in an amount sufficient to provide at least about 0.4 equivalents of nitrogen crosslinking functionality for each equivalent of hydroxy functionality included in the composition.
Abstract:
An un-reacted substantially formaldehyde free curable binder solution for binding loose matter consists essentially of a solution obtainable by dissolving a reducing sugar, an ammonium salt acid precursor, optionally a carboxylic acid or a precursor thereof and optionally ammonia in water.
Abstract:
A method of manufacturing a mineral fibre thermal insulation product comprises the sequential steps of:
Forming mineral fibres from a molten mineral mixture; Spraying a substantially formaldehyde free binder solution on to the mineral fibres, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibres to which the binder solution has been applied to form a batt of mineral fibres; and Curing the batt comprising the mineral fibres and the binder which is in contact with the mineral fibres by passing the batt through a curing oven so as to provide a batt of mineral fibres held together by a substantially water insoluble cured binder.
Abstract:
Provided is a composition for forming a protective film using a polymer having an imide group: that is cured under a film-forming condition not only in the air but in an inert gas; that can form a protective film having excellent heat resistance, embedding and planarization ability for a pattern formed on a substrate, and good adhesiveness to the substrate; and that can form a protective film having excellent resistance against an alkaline aqueous hydrogen peroxide. A composition for forming a protective film against an alkaline aqueous hydrogen peroxide, the composition including: (A) a polymer having a repeating unit represented by the following general formula (1A) and having at least one or more fluorine atoms and at least one or more hydroxy groups, a terminal group thereof is a group of any one of the following general formulae (1B) and (1C); and (B) an organic solvent,
wherein R1 represents any one group represented by the following formula (1D), and two or more kinds of R1 are optionally used in combination.
Abstract:
The composition contains a compound and a solvent. The compound includes a group represented by formula (1). The compound has a molecular weight of no less than 200 and has a percentage content of carbon atoms of no less than 40% by mass. In the formula (1), R1 and R2 each independently represent a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or R1 and R2 taken together represent a part of an alicyclic structure having 3 to 20 ring atoms constituted together with the carbon atom to which R1 and R2 bond; Ar1 represents a group obtained by removing (n+3) hydrogen atoms from an arene or heteroarene having 6 to 20 ring atoms; and X represents an oxygen atom, —CR3R4—, —CR3R4—O— or —O—CR3R4—.
Abstract:
There is provided a coating composition with excellent storage stability, and with excellent mar resistance for obtained coating films. The coating composition comprises a hydroxyl group-containing resin (A), a curing agent (B) and a dispersion of acrylic resin-coated silica particles (C), the dispersion of acrylic resin-coated silica particles (C) being an acrylic resin-coated silica particle dispersion obtained by reacting silica particles with a polymerizable unsaturated group (c1) and a polymerizable unsaturated monomer (c2) in a mass ratio of (c1):(c2)=20:80 to 90:10, the polymerizable unsaturated monomer (c2) including a specific polymerizable unsaturated monomer (c2-1) as at least a portion of its components, and the molecular weight of the resin covering the silica particles being 400 to 6000.