Abstract:
The present invention provides a gas oil composition that can achieve environment load reduction, low temperature properties and low fuel consumption all together and is suitably used in a winter season. The gas oil composition comprises an FT synthetic base oil in an amount of 60 percent by mass or more on the basis of the total mass of the composition and has a sulfur content of 5 ppm by mass or less, an aromatic content of 10 percent by volume or less, an oxygen content of 100 ppm or less, an end point of 360° C. or lower, an insoluble content after an oxidation stability test of 0.5 mg/100 mL or less, an HFRR wear scar diameter (WS1.4) of 400 μm or smaller and a specific relation in normal paraffin contents and the total content thereof.
Abstract:
This invention relates to low sulfur marine/bunker fuel compositions and methods of making same. Contrary to conventional marine/bunker fuel compositions/methods, the inventive lower sulfur compositions/methods focus on use of mostly uncracked components, such as (cat feed) hydrotreated gasoils, and/or can also have reduced contents of residual components.
Abstract:
Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
Abstract:
Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
Abstract:
Disclosed is a method of manufacturing a diesel fuel base stock improved in low-temperature flowability, including: fractionating in a first fractionator a synthetic oil obtained by Fisher-Tropsch synthesis into at least two fractions of a first middle fraction containing a component having a boiling range corresponding to diesel fuel oil, and a wax fraction containing a wax component heavier than the first middle fraction; hydroisomerizing the first middle fraction by bringing the first middle fraction into contact with a hydroisomerizing catalyst to produce a hydroisomerized middle fraction; hydrocracking the wax fraction by bringing the wax fraction into contact with a hydrocracking catalyst to produce a wax-decomposition component; and fractionating in a second fractionator a mixture of the produced hydroisomerized middle fraction and the produced wax-decomposition component, wherein rectification conditions in the first fractionator and/or rectification conditions in the second fractionator are adjusted to selectively reduce an n-paraffin having 19 or more carbon atoms in a heavy component contained in the diesel fuel base stock. Furthermore, disclosed is a diesel fuel base stock obtained by the manufacturing method.
Abstract:
Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed.
Abstract:
A method of manufacturing a purified renewable diesel product from a biofeedstock includes filtering the biofeedstock, heating the biofeedstock to about 520° F., introducing hydrogen into the biofeedstock, and treating the biofeedstock in a reactor to generate a renewable diesel product. Additionally, the method includes cooling the renewable diesel product wherein the renewable diesel product comprises a liquid, separating vapors from the liquid, and distilling the liquid in a distillation column to generate the purified renewable diesel product. In at least one embodiment the biofeedstock comprises at least one of waste grease, tallow, algae, algal oil, vegetable oil, and soybean oil.
Abstract:
The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.
Abstract:
An approach that permits continuous batch conversion of alpha-olefins and internal-olefins to oligomeric materials without fouling the reaction vessel and provides a simple and highly efficient method for making very cost effective catalyst systems based on Zeigler-Natta Group 4 metallocenes. Embodiments of this invention produce diesel and turbine fuels that are 100% synthetic iso-paraffinic kerosenes with flashpoints greater than 61 deg C.